-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathrun_training_testing.py
52 lines (42 loc) · 1.71 KB
/
run_training_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import torch
import logging
from data_processing.cifar10 import get_data_loaders
from model.network import VelocityNetwork, CNF
from training.trainer import CNFTrainer
from testing.evaluator import FIDScore, evaluate_model
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def main():
# Configuration
data_dir = os.path.join('data', 'cifar-10-batches-py')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size = 512
n_epochs = 2
# Set up data loaders with reduced num_workers due to memory constraints
logger.info("Setting up data loaders...")
train_loader, test_loader = get_data_loaders(data_dir, batch_size=batch_size, num_workers=1)
# Initialize model
logger.info("Initializing model...")
velocity_net = VelocityNetwork()
model = CNF(velocity_net)
# Initialize trainer
logger.info("Setting up trainer...")
trainer = CNFTrainer(model, train_loader, test_loader, device)
# Initialize FID calculator
logger.info("Setting up FID calculator...")
fid_calculator = FIDScore(device)
# Training loop
logger.info("Starting training...")
for epoch in range(n_epochs):
train_loss = trainer.train_epoch(epoch)
eval_loss = trainer.evaluate()
logger.info(f"Epoch {epoch+1}/{n_epochs}")
logger.info(f"Training Loss: {train_loss:.4f}")
logger.info(f"Evaluation Loss: {eval_loss:.4f}")
# Final evaluation
logger.info("Running final evaluation...")
metrics = evaluate_model(trainer.ema_model, test_loader, fid_calculator, device)
logger.info(f"Final FID Score: {metrics['fid']:.4f}")
if __name__ == "__main__":
main()