-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathrun_model_revision.py
272 lines (235 loc) · 10.8 KB
/
run_model_revision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import torch
import torch.utils.data as data
import torch.optim.lr_scheduler as lr_scheduler
from model.intentgcl import IntentGCL
from model.utils import metrics, scipy_sparse_mat_to_torch_sparse_tensor
from data_processing.dataset import load_data, TrnData
from tqdm import tqdm
import pandas as pd
import time
import os
import logging
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import seaborn as sns
# Configure logging
logging.basicConfig(
filename=f'/workplace/project/revision_logs_{time.strftime("%Y-%m-%d-%H-%M")}.log',
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s'
)
class RevisionConfig:
def __init__(self, **kwargs):
self.embed_dim = kwargs.get('embed_dim', 64)
self.n_layers = kwargs.get('n_layers', 3)
self.n_intents = kwargs.get('n_intents', 128)
self.use_residual = kwargs.get('use_residual', True)
self.temp = kwargs.get('temp', 0.2)
self.lambda_1 = kwargs.get('lambda_1', 0.5) # Balanced BPR loss weight
self.lambda_2 = kwargs.get('lambda_2', 0.5) # Balanced contrastive loss weight
self.lambda_3 = kwargs.get('lambda_3', 1e-4) # L2 regularization
self.dropout = kwargs.get('dropout', 0.2)
self.batch_size = kwargs.get('batch_size', 2048)
self.inter_batch = kwargs.get('inter_batch', 4096)
self.lr = kwargs.get('lr', 1e-3)
self.epochs = kwargs.get('epochs', 50)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def plot_embeddings(user_emb, item_emb, epoch, experiment_name):
combined_emb = np.vstack([user_emb[:1000], item_emb[:1000]])
tsne = TSNE(n_components=2, random_state=42)
vis_emb = tsne.fit_transform(combined_emb)
plt.figure(figsize=(10, 10))
plt.scatter(vis_emb[:1000, 0], vis_emb[:1000, 1], c='blue', label='Users', alpha=0.5)
plt.scatter(vis_emb[1000:, 0], vis_emb[1000:, 1], c='red', label='Items', alpha=0.5)
plt.legend()
plt.title(f'Embedding Visualization - Epoch {epoch}')
plt.savefig(f'/workplace/project/embedding_viz_{experiment_name}_epoch_{epoch}.png')
plt.close()
def train_and_evaluate(config, experiment_name):
logging.info(f"Starting experiment: {experiment_name}")
logging.info(f"Configuration: {vars(config)}")
# Load and preprocess data
train, train_csr, test_labels = load_data('/workplace/project/data/gowalla/')
train_data = TrnData(train)
train_loader = data.DataLoader(train_data, batch_size=config.inter_batch, shuffle=True, num_workers=0)
adj_norm = scipy_sparse_mat_to_torch_sparse_tensor(train).coalesce().to(config.device)
adj = scipy_sparse_mat_to_torch_sparse_tensor(train).coalesce().to(config.device)
# SVD enhancement
svd_u, s, svd_v = torch.svd_lowrank(adj, q=8) # Increased SVD components
u_mul_s = svd_u @ torch.diag(s)
v_mul_s = svd_v @ torch.diag(s)
# Initialize model
model = IntentGCL(
n_users=train.shape[0],
n_items=train.shape[1],
embed_dim=config.embed_dim,
u_mul_s=u_mul_s,
v_mul_s=v_mul_s,
ut=svd_u.T,
vt=svd_v.T,
train_csr=train_csr,
adj_norm=adj_norm,
n_layers=config.n_layers,
temp=config.temp,
lambda_1=config.lambda_1,
lambda_2=config.lambda_2,
lambda_3=config.lambda_3,
dropout=config.dropout,
n_intents=config.n_intents,
batch_user=config.batch_size,
device=config.device,
use_residual=config.use_residual
).to(config.device)
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=5, verbose=True)
metrics_history = {
'epoch': [], 'loss': [], 'loss_bpr': [], 'loss_contrast': [], 'loss_reg': [],
'recall@20': [], 'ndcg@20': [], 'recall@40': [], 'ndcg@40': [],
'mad': [], 'lr': []
}
best_recall20 = 0
best_epoch = 0
patience = 10
patience_counter = 0
for epoch in range(config.epochs):
# Training
model.train()
epoch_loss = epoch_loss_bpr = epoch_loss_contrast = epoch_loss_reg = 0
train_loader.dataset.neg_sampling()
for batch in tqdm(train_loader, desc=f'Epoch {epoch+1}/{config.epochs}'):
user_ids, pos_items, neg_items = [x.to(config.device) for x in batch]
item_ids = torch.cat([pos_items, neg_items], dim=0)
optimizer.zero_grad()
loss, loss_bpr, loss_contrast, loss_reg = model(user_ids, item_ids, pos_items, neg_items)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # Added gradient clipping
optimizer.step()
epoch_loss += loss.item()
epoch_loss_bpr += loss_bpr.item()
epoch_loss_contrast += loss_contrast.item()
epoch_loss_reg += loss_reg.item()
avg_loss = epoch_loss / len(train_loader)
avg_loss_bpr = epoch_loss_bpr / len(train_loader)
avg_loss_contrast = epoch_loss_contrast / len(train_loader)
avg_loss_reg = epoch_loss_reg / len(train_loader)
# Evaluation
model.eval()
with torch.no_grad():
test_users = torch.arange(train.shape[0]).to(config.device)
all_recall_20 = all_ndcg_20 = all_recall_40 = all_ndcg_40 = 0
all_embeddings = []
batch_count = (len(test_users) + config.batch_size - 1) // config.batch_size
for i in range(batch_count):
start = i * config.batch_size
end = min((i + 1) * config.batch_size, len(test_users))
batch_users = test_users[start:end]
predictions = model(batch_users, None, None, None, test=True)
predictions = predictions.cpu().numpy()
recall_20, ndcg_20 = metrics(test_users[start:end].cpu().numpy(), predictions, 20, test_labels)
recall_40, ndcg_40 = metrics(test_users[start:end].cpu().numpy(), predictions, 40, test_labels)
all_recall_20 += recall_20
all_ndcg_20 += ndcg_20
all_recall_40 += recall_40
all_ndcg_40 += ndcg_40
all_embeddings.append(predictions)
avg_recall_20 = all_recall_20 / batch_count
avg_ndcg_20 = all_ndcg_20 / batch_count
avg_recall_40 = all_recall_40 / batch_count
avg_ndcg_40 = all_ndcg_40 / batch_count
# MAD calculation and embedding visualization
all_embeddings = np.concatenate(all_embeddings, axis=0)
mad = np.mean(np.abs(all_embeddings - np.mean(all_embeddings, axis=0)))
if epoch % 10 == 0:
plot_embeddings(model.final_user_embedding.detach().cpu().numpy(),
model.final_item_embedding.detach().cpu().numpy(),
epoch, experiment_name)
# Log metrics
log_msg = (f'Epoch {epoch+1}: Loss={avg_loss:.4f}, BPR Loss={avg_loss_bpr:.4f}, '
f'Contrast Loss={avg_loss_contrast:.4f}, Reg Loss={avg_loss_reg:.4f}\n'
f'Recall@20={avg_recall_20:.4f}, NDCG@20={avg_ndcg_20:.4f}, '
f'Recall@40={avg_recall_40:.4f}, NDCG@40={avg_ndcg_40:.4f}, '
f'MAD={mad:.4f}, LR={optimizer.param_groups[0]["lr"]:.6f}')
logging.info(log_msg)
# Store metrics
metrics_history['epoch'].append(epoch+1)
metrics_history['loss'].append(avg_loss)
metrics_history['loss_bpr'].append(avg_loss_bpr)
metrics_history['loss_contrast'].append(avg_loss_contrast)
metrics_history['loss_reg'].append(avg_loss_reg)
metrics_history['recall@20'].append(avg_recall_20)
metrics_history['ndcg@20'].append(avg_ndcg_20)
metrics_history['recall@40'].append(avg_recall_40)
metrics_history['ndcg@40'].append(avg_ndcg_40)
metrics_history['mad'].append(mad)
metrics_history['lr'].append(optimizer.param_groups[0]['lr'])
# Learning rate scheduling and early stopping
scheduler.step(avg_recall_20)
if avg_recall_20 > best_recall20:
best_recall20 = avg_recall_20
best_epoch = epoch
patience_counter = 0
torch.save(model.state_dict(), f'/workplace/project/best_model_{experiment_name}.pt')
else:
patience_counter += 1
if patience_counter >= patience:
logging.info(f"Early stopping triggered at epoch {epoch+1}")
break
# Save experiment results
results_df = pd.DataFrame(metrics_history)
results_df.to_csv(f'/workplace/project/results_{experiment_name}.csv', index=False)
logging.info(f"Best model at epoch {best_epoch+1} with Recall@20={best_recall20:.4f}")
return metrics_history
def main():
experiments = {
'refined_base': {
'use_residual': True,
'lambda_1': 0.5,
'lambda_2': 0.5,
'lambda_3': 1e-4
},
'hierarchical_intent': {
'n_intents': 256,
'use_residual': True,
'lambda_1': 0.5,
'lambda_2': 0.5,
'lambda_3': 1e-4
},
'deep_gnn': {
'n_layers': 4,
'use_residual': True,
'lambda_1': 0.5,
'lambda_2': 0.5,
'lambda_3': 1e-4,
'dropout': 0.3
}
}
results = {}
for name, params in experiments.items():
try:
logging.info(f"\n{'='*50}\nStarting experiment set: {name}\n{'='*50}")
config = RevisionConfig(**params)
results[name] = train_and_evaluate(config, name)
except Exception as e:
logging.error(f"Error in experiment {name}: {str(e)}")
import traceback
logging.error(traceback.format_exc())
continue
# Save comparative results
comparative_metrics = {}
for name, history in results.items():
if history: # Check if the experiment completed successfully
idx = history['recall@20'].index(max(history['recall@20']))
comparative_metrics[name] = {
'best_recall@20': history['recall@20'][idx],
'best_ndcg@20': history['ndcg@20'][idx],
'best_recall@40': history['recall@40'][idx],
'best_ndcg@40': history['ndcg@40'][idx],
'final_mad': history['mad'][idx],
'best_epoch': idx + 1
}
if comparative_metrics:
pd.DataFrame(comparative_metrics).to_csv('/workplace/project/comparative_results_revision.csv')
logging.info("\nRevision experiments completed. Results saved.")
if __name__ == "__main__":
main()