-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathrun_adaptive_quantization.py
142 lines (118 loc) · 5.01 KB
/
run_adaptive_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import torch.optim as optim
from model.vae import FiniteScalarQuantizedVAE
from data_processing.dataset import get_data_loaders
from training.trainer import Trainer
import json
import os
import logging
# Setup logging
logging.basicConfig(filename='adaptive_quantization.log',
level=logging.INFO,
format='%(asctime)s - %(message)s')
class AdaptiveQuantization:
def __init__(self, config):
self.base_levels = config['base_levels']
self.max_levels = config['max_levels']
self.adaptation_threshold = config['adaptation_threshold']
self.levels = self.base_levels
def adapt_levels(self, quantization_loss):
if quantization_loss > self.adaptation_threshold:
self.levels = min(self.levels + 2, self.max_levels)
return True
return False
def main():
# Set device
device = torch.cuda.current_device()
logging.info(f"Using device: {device}")
# Set hyperparameters with adaptive quantization
config = {
'batch_size': 32, # Reduced batch size
'num_workers': 2,
'latent_dim': 32, # Reduced latent dimension
'hidden_dim': 32, # Reduced hidden dimension
'base_levels': 5,
'max_levels': 15,
'learning_rate': 1e-3,
'num_epochs': 50,
'adaptation_threshold': 1000.0,
'grad_clip_value': 1.0
}
# Create data loaders
logging.info("Loading CIFAR-10 dataset...")
train_loader, test_loader = get_data_loaders(
data_dir='data',
batch_size=config['batch_size'],
num_workers=config['num_workers']
)
# Initialize adaptive quantization
adaptive_quant = AdaptiveQuantization(config)
# Initialize model
logging.info("Initializing model...")
model = FiniteScalarQuantizedVAE(
latent_dim=config['latent_dim'],
hidden_dim=config['hidden_dim'],
num_levels=adaptive_quant.levels
).to(device)
# Initialize optimizer with gradient clipping
optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'])
trainer = Trainer(model, train_loader, test_loader, optimizer, device)
history = {'train_loss': [], 'test_loss': [], 'quant_levels': [], 'fid': []}
for epoch in range(config['num_epochs']):
logging.info(f"\nEpoch {epoch+1}/{config['num_epochs']}")
logging.info(f"Current quantization levels: {adaptive_quant.levels}")
# Train and evaluate
train_metrics = trainer.train_epoch(epoch)
# Clear GPU cache
torch.cuda.empty_cache()
test_metrics = trainer.evaluator.evaluate()
# Log metrics
logging.info(f"Train Loss: {train_metrics['loss']:.4f}")
logging.info(f"Test Loss: {test_metrics['loss']:.4f}")
logging.info(f"FID Score: {test_metrics['fid']:.4f}")
logging.info(f"Quantization Loss: {train_metrics['quant_loss']:.4f}")
# Update history
history['train_loss'].append(train_metrics['loss'])
history['test_loss'].append(test_metrics['loss'])
history['quant_levels'].append(adaptive_quant.levels)
history['fid'].append(test_metrics['fid'])
# Adapt quantization levels
if adaptive_quant.adapt_levels(train_metrics['quant_loss']):
# Create new model with updated levels
new_model = FiniteScalarQuantizedVAE(
latent_dim=config['latent_dim'],
hidden_dim=config['hidden_dim'],
num_levels=adaptive_quant.levels
).to(device)
# Transfer learnable parameters
new_model.load_state_dict(model.state_dict(), strict=False)
model = new_model
trainer = Trainer(model, train_loader, test_loader, optimizer, device)
# Update optimizer
optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'])
logging.info(f"Adapted quantization levels to: {adaptive_quant.levels}")
# Save checkpoint
if epoch % 10 == 0:
checkpoint_path = f'checkpoints/adaptive_quant_epoch_{epoch}.pt'
os.makedirs('checkpoints', exist_ok=True)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'quant_levels': adaptive_quant.levels,
'history': history
}, checkpoint_path)
logging.info(f"Saved checkpoint at epoch {epoch}")
# Clear GPU cache
torch.cuda.empty_cache()
# Save final training history
with open('adaptive_quantization_history.json', 'w') as f:
json.dump(history, f)
logging.info("Training history saved to adaptive_quantization_history.json")
# Final evaluation
final_metrics = trainer.evaluator.evaluate()
logging.info("\nFinal Evaluation:")
logging.info(f"Test Loss: {final_metrics['loss']:.4f}")
logging.info(f"FID Score: {final_metrics['fid']:.4f}")
if __name__ == '__main__':
main()