-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathrun_hierarchical_quantization.py
174 lines (145 loc) · 5.86 KB
/
run_hierarchical_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import torch.optim as optim
from model.vae import FiniteScalarQuantizedVAE
from data_processing.dataset import get_data_loaders
from training.trainer import Trainer
import json
import os
import logging
import torch.nn.functional as F
import numpy as np
# Setup logging
logging.basicConfig(filename='hierarchical_quantization.log',
level=logging.INFO,
format='%(asctime)s - %(message)s')
class HierarchicalQuantization(nn.Module):
def __init__(self, base_levels=5, level_multiplier=2, num_hierarchies=3, embedding_dim=32):
super().__init__()
self.base_levels = base_levels
self.level_multiplier = level_multiplier
self.num_hierarchies = num_hierarchies
self.embedding_dim = embedding_dim
# Create hierarchical quantizers
self.quantizers = nn.ModuleList([
FiniteScalarQuantization(
num_levels=base_levels * (level_multiplier ** i),
embedding_dim=embedding_dim
) for i in range(num_hierarchies)
])
# Projection layers between hierarchies
self.projections = nn.ModuleList([
nn.Linear(embedding_dim, embedding_dim)
for _ in range(num_hierarchies - 1)
])
self.combination_weights = nn.Parameter(
torch.ones(num_hierarchies) / num_hierarchies
)
def forward(self, z):
quantized_outputs = []
current_z = z
# Forward pass through hierarchies
for i in range(self.num_hierarchies):
quantized = self.quantizers[i](current_z)
quantized_outputs.append(quantized)
if i < self.num_hierarchies - 1:
current_z = self.projections[i](quantized)
# Weighted combination of hierarchies
weights = F.softmax(self.combination_weights, dim=0)
combined_output = sum(w * q for w, q in zip(weights, quantized_outputs))
return combined_output, quantized_outputs
def main():
# Set device and seed
device = torch.cuda.current_device()
torch.manual_seed(42)
logging.info(f"Using device: {device}")
# Configuration
config = {
'batch_size': 32,
'num_workers': 2,
'latent_dim': 32,
'hidden_dim': 32,
'learning_rate': 1e-4,
'num_epochs': 50,
'base_levels': 5,
'level_multiplier': 2,
'num_hierarchies': 3,
'gradient_clip_val': 1.0
}
# Data loaders
train_loader, test_loader = get_data_loaders(
data_dir='data',
batch_size=config['batch_size'],
num_workers=config['num_workers']
)
# Initialize models
hierarchical_quantizer = HierarchicalQuantization(
base_levels=config['base_levels'],
level_multiplier=config['level_multiplier'],
num_hierarchies=config['num_hierarchies'],
embedding_dim=config['latent_dim']
).to(device)
model = FiniteScalarQuantizedVAE(
latent_dim=config['latent_dim'],
hidden_dim=config['hidden_dim'],
quantizer=hierarchical_quantizer
).to(device)
optimizer = optim.Adam(
list(model.parameters()) + list(hierarchical_quantizer.parameters()),
lr=config['learning_rate']
)
history = {
'train_loss': [], 'test_loss': [],
'train_recon_loss': [], 'test_recon_loss': [],
'train_quant_loss': [], 'test_quant_loss': [],
'level_utilization': [], 'fid': []
}
for epoch in range(config['num_epochs']):
logging.info(f"\nEpoch {epoch+1}/{config['num_epochs']}")
model.train()
train_metrics = trainer.train_epoch(epoch)
# Clear GPU cache
torch.cuda.empty_cache()
test_metrics = trainer.evaluator.evaluate()
# Log level utilization
level_utils = []
for i, quantizer in enumerate(hierarchical_quantizer.quantizers):
utilization = quantizer.get_codebook_utilization()
level_utils.append(utilization)
logging.info(f"Level {i+1} utilization: {utilization:.4f}")
# Update history
history['train_loss'].append(train_metrics['loss'])
history['test_loss'].append(test_metrics['loss'])
history['train_recon_loss'].append(train_metrics['recon_loss'])
history['test_recon_loss'].append(test_metrics['recon_loss'])
history['train_quant_loss'].append(train_metrics['quant_loss'])
history['test_quant_loss'].append(test_metrics['quant_loss'])
history['level_utilization'].append(level_utils)
history['fid'].append(test_metrics['fid'])
# Log metrics
logging.info(f"Train Loss: {train_metrics['loss']:.4f}")
logging.info(f"Test Loss: {test_metrics['loss']:.4f}")
logging.info(f"FID Score: {test_metrics['fid']:.4f}")
# Save checkpoint
if epoch % 10 == 0:
checkpoint_path = f'checkpoints/hierarchical_quant_epoch_{epoch}.pt'
os.makedirs('checkpoints', exist_ok=True)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'history': history
}, checkpoint_path)
logging.info(f"Saved checkpoint at epoch {epoch}")
# Clear GPU cache
torch.cuda.empty_cache()
# Save final history
with open('hierarchical_quantization_history.json', 'w') as f:
json.dump(history, f)
logging.info("Training history saved to hierarchical_quantization_history.json")
# Final evaluation
final_metrics = trainer.evaluator.evaluate()
logging.info("\nFinal Evaluation:")
logging.info(f"Test Loss: {final_metrics['loss']:.4f}")
logging.info(f"FID Score: {final_metrics['fid']:.4f}")
if __name__ == '__main__':
main()