-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathrun_regularized_training.py
193 lines (160 loc) · 6.3 KB
/
run_regularized_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from model.vae import FiniteScalarQuantizedVAE
from data_processing.dataset import get_data_loaders
from training.trainer import Trainer
import json
import os
import logging
# Setup logging
logging.basicConfig(filename='regularized_training.log',
level=logging.INFO,
format='%(asctime)s - %(message)s')
class RegularizedQuantizationLoss(nn.Module):
def __init__(self, beta=0.25, entropy_weight=0.1):
super().__init__()
self.beta = beta
self.entropy_weight = entropy_weight
def entropy_regularization(self, quantized_z):
# Compute distribution of quantized values
hist = torch.histc(quantized_z, bins=100)
probs = hist / hist.sum()
entropy = -(probs * torch.log(probs + 1e-10)).sum()
return entropy
def forward(self, z, quantized_z, codebook):
# Standard VQ losses
commitment_loss = F.mse_loss(z, quantized_z.detach())
codebook_loss = F.mse_loss(quantized_z, z.detach())
# Entropy regularization
entropy_reg = self.entropy_regularization(quantized_z)
# L2 regularization on codebook
l2_reg = torch.norm(codebook, p=2)
total_loss = commitment_loss + self.beta * codebook_loss - self.entropy_weight * entropy_reg + 0.01 * l2_reg
return total_loss, {
'commitment': commitment_loss.item(),
'codebook': codebook_loss.item(),
'entropy': entropy_reg.item(),
'l2': l2_reg.item()
}
def main():
# Set device
device = torch.cuda.current_device()
logging.info(f"Using device: {device}")
# Configuration
config = {
'batch_size': 32,
'num_workers': 2,
'latent_dim': 32,
'hidden_dim': 32,
'num_levels': 8,
'learning_rate': 1e-4,
'num_epochs': 50,
'beta': 0.25,
'entropy_weight': 0.1,
'gradient_clip_val': 1.0
}
# Data loaders
train_loader, test_loader = get_data_loaders(
data_dir='data',
batch_size=config['batch_size'],
num_workers=config['num_workers']
)
# Initialize model
model = FiniteScalarQuantizedVAE(
latent_dim=config['latent_dim'],
hidden_dim=config['hidden_dim'],
num_levels=config['num_levels']
).to(device)
# Initialize optimizer and trainer
optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'])
trainer = Trainer(model, train_loader, test_loader, optimizer, device)
# Custom loss function
criterion = RegularizedQuantizationLoss(
beta=config['beta'],
entropy_weight=config['entropy_weight']
)
history = {
'train_loss': [], 'test_loss': [],
'commitment_loss': [], 'codebook_loss': [],
'entropy_reg': [], 'l2_reg': [],
'fid': []
}
for epoch in range(config['num_epochs']):
logging.info(f"\nEpoch {epoch+1}/{config['num_epochs']}")
model.train()
# Training loop
train_metrics = {
'loss': 0.0,
'commitment': 0.0,
'codebook': 0.0,
'entropy': 0.0,
'l2': 0.0
}
for batch_idx, images in enumerate(train_loader):
images = images.to(device)
optimizer.zero_grad()
# Forward pass
encoded = model.encoder(images)
quantized, quant_info = model.quantizer(encoded)
reconstructed = model.decoder(quantized)
# Compute losses
loss, loss_components = criterion(encoded, quantized, model.quantizer.codebook)
# Update metrics
train_metrics['loss'] += loss.item()
for k, v in loss_components.items():
train_metrics[k] += v
# Backward pass with gradient clipping
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), config['gradient_clip_val'])
optimizer.step()
if batch_idx % 100 == 0:
logging.info(f"Batch {batch_idx}: Loss = {loss.item():.4f}")
# Average metrics
for k in train_metrics:
train_metrics[k] /= len(train_loader)
# Clear GPU cache
torch.cuda.empty_cache()
# Evaluation
test_metrics = trainer.evaluator.evaluate()
# Update history
history['train_loss'].append(train_metrics['loss'])
history['test_loss'].append(test_metrics['loss'])
history['commitment_loss'].append(train_metrics['commitment'])
history['codebook_loss'].append(train_metrics['codebook'])
history['entropy_reg'].append(train_metrics['entropy'])
history['l2_reg'].append(train_metrics['l2'])
history['fid'].append(test_metrics['fid'])
# Log metrics
logging.info(f"Train Loss: {train_metrics['loss']:.4f}")
logging.info(f"Test Loss: {test_metrics['loss']:.4f}")
logging.info(f"FID Score: {test_metrics['fid']:.4f}")
logging.info(f"Commitment Loss: {train_metrics['commitment']:.4f}")
logging.info(f"Codebook Loss: {train_metrics['codebook']:.4f}")
logging.info(f"Entropy Reg: {train_metrics['entropy']:.4f}")
logging.info(f"L2 Reg: {train_metrics['l2']:.4f}")
# Save checkpoint
if epoch % 10 == 0:
checkpoint_path = f'checkpoints/regularized_epoch_{epoch}.pt'
os.makedirs('checkpoints', exist_ok=True)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'history': history
}, checkpoint_path)
logging.info(f"Saved checkpoint at epoch {epoch}")
# Clear GPU cache
torch.cuda.empty_cache()
# Save final history
with open('regularized_training_history.json', 'w') as f:
json.dump(history, f)
logging.info("Training history saved to regularized_training_history.json")
# Final evaluation
final_metrics = trainer.evaluator.evaluate()
logging.info("\nFinal Evaluation:")
logging.info(f"Test Loss: {final_metrics['loss']:.4f}")
logging.info(f"FID Score: {final_metrics['fid']:.4f}")
if __name__ == '__main__':
main()