-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathrun_temperature_annealing.py
120 lines (99 loc) · 3.92 KB
/
run_temperature_annealing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
import torch.optim as optim
from model.vae import FiniteScalarQuantizedVAE
from data_processing.dataset import get_data_loaders
from training.trainer import Trainer
import json
import os
import logging
# Setup logging
logging.basicConfig(filename='temperature_annealing.log',
level=logging.INFO,
format='%(asctime)s - %(message)s')
def main():
# Set device
device = torch.cuda.current_device()
logging.info(f"Using device: {device}")
# Set hyperparameters with temperature annealing
config = {
'batch_size': 32, # Reduced batch size
'num_workers': 2,
'latent_dim': 32, # Reduced latent dimension
'hidden_dim': 32, # Reduced hidden dimension
'num_levels': 10,
'learning_rate': 1e-3,
'num_epochs': 50,
'initial_temperature': 1.0,
'min_temperature': 0.1,
'annealing_factor': 0.98
}
# Create data loaders
logging.info("Loading CIFAR-10 dataset...")
train_loader, test_loader = get_data_loaders(
data_dir='data',
batch_size=config['batch_size'],
num_workers=config['num_workers']
)
# Initialize model
logging.info("Initializing model...")
model = FiniteScalarQuantizedVAE(
latent_dim=config['latent_dim'],
hidden_dim=config['hidden_dim'],
num_levels=config['num_levels']
).to(device)
# Initialize optimizer with gradient clipping
optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'])
# Initialize trainer with temperature annealing
temperature = config['initial_temperature']
history = {'train_loss': [], 'test_loss': [], 'temperature': [], 'fid': []}
for epoch in range(config['num_epochs']):
logging.info(f"\nEpoch {epoch+1}/{config['num_epochs']}")
logging.info(f"Current temperature: {temperature:.4f}")
# Update model's temperature
model.quantizer.set_temperature(temperature)
# Initialize trainer
trainer = Trainer(model, train_loader, test_loader, optimizer, device)
# Train epoch
train_metrics = trainer.train_epoch(epoch)
# Clear GPU cache
torch.cuda.empty_cache()
test_metrics = trainer.evaluator.evaluate()
# Log metrics
logging.info(f"Train Loss: {train_metrics['loss']:.4f}")
logging.info(f"Test Loss: {test_metrics['loss']:.4f}")
logging.info(f"FID Score: {test_metrics['fid']:.4f}")
# Update history
history['train_loss'].append(train_metrics['loss'])
history['test_loss'].append(test_metrics['loss'])
history['temperature'].append(temperature)
history['fid'].append(test_metrics['fid'])
# Update temperature
temperature = max(
temperature * config['annealing_factor'],
config['min_temperature']
)
# Save checkpoint
if epoch % 10 == 0:
checkpoint_path = f'checkpoints/temperature_annealing_epoch_{epoch}.pt'
os.makedirs('checkpoints', exist_ok=True)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'temperature': temperature,
'history': history
}, checkpoint_path)
logging.info(f"Saved checkpoint at epoch {epoch}")
# Clear GPU cache
torch.cuda.empty_cache()
# Save final training history
with open('temperature_annealing_history.json', 'w') as f:
json.dump(history, f)
logging.info("Training history saved to temperature_annealing_history.json")
# Final evaluation
final_metrics = trainer.evaluator.evaluate()
logging.info("\nFinal Evaluation:")
logging.info(f"Test Loss: {final_metrics['loss']:.4f}")
logging.info(f"FID Score: {final_metrics['fid']:.4f}")
if __name__ == '__main__':
main()