-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathrun_training_testing.py
66 lines (55 loc) · 2.01 KB
/
run_training_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.optim as optim
from model.vae import FiniteScalarQuantizedVAE
from data_processing.dataset import get_data_loaders
from training.trainer import Trainer
import json
def main():
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Set hyperparameters
config = {
'batch_size': 64, # Reduced batch size
'num_workers': 4,
'latent_dim': 64,
'hidden_dim': 64,
'num_levels': 10,
'learning_rate': 1e-3,
'num_epochs': 50 # Increased epochs for better convergence and statistical results
}
# Create data loaders
print("Loading CIFAR-10 dataset...")
train_loader, test_loader = get_data_loaders(
data_dir='data',
batch_size=config['batch_size'],
num_workers=config['num_workers']
)
# Initialize model
print("Initializing model...")
model = FiniteScalarQuantizedVAE(
latent_dim=config['latent_dim'],
hidden_dim=config['hidden_dim'],
num_levels=config['num_levels']
).to(device)
# Initialize optimizer
optimizer = optim.Adam(model.parameters(), lr=config['learning_rate'])
# Initialize trainer
trainer = Trainer(model, train_loader, test_loader, optimizer, device)
# Train model
print("Starting training...")
history = trainer.train(num_epochs=config['num_epochs'])
# Save training history
with open('training_history.json', 'w') as f:
json.dump({k: [float(v) for v in vals] for k, vals in history.items()}, f)
print("Training history saved to training_history.json")
# Save model
torch.save(model.state_dict(), 'model.pt')
print("Model saved to model.pt")
# Final evaluation
print("\nFinal Evaluation:")
final_metrics = trainer.evaluator.evaluate(num_samples=500) # Reduced number of samples
print(f"Test Loss: {final_metrics['loss']:.4f}")
print(f"FID Score: {final_metrics['fid']:.4f}")
if __name__ == '__main__':
main()