-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathrun_visualization_study.py
204 lines (166 loc) · 7.01 KB
/
run_visualization_study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from model.improved_diffusion import ImprovedDiffusionModel
from data_processing.dataset import load_dataset, get_train_val_test_split
from training.train import train_epoch, evaluate
import json
import os
import torch.nn.functional as F
def setup_visualization(log_dir='./logs/visualization'):
"""Setup logging directory for visualization results"""
os.makedirs(log_dir, exist_ok=True)
return log_dir
def extract_representations(model, data, device):
"""Extract node representations at different layers"""
model.eval()
with torch.no_grad():
x = data.x.to(device)
representations = {}
# Initial representation
Z = model.input_proj(x)
representations['initial'] = Z.cpu().numpy()
# Intermediate layer representations
Z_current = Z
for i, layer in enumerate(model.diffusion_layers):
Z_current = layer(Z_current)
representations[f'layer_{i+1}'] = Z_current.cpu().numpy()
# Final representation
representations['final'] = Z_current.cpu().numpy()
return representations
def visualize_representations(repr_dict, labels, save_dir, title):
"""Visualize representations using t-SNE and PCA"""
# Create visualization subfolder
vis_dir = os.path.join(save_dir, 'representation_plots')
os.makedirs(vis_dir, exist_ok=True)
# Setup visualization methods
vis_methods = {
'tsne': TSNE(n_components=2, random_state=42),
'pca': PCA(n_components=2)
}
metrics = {}
for layer_name, repr_data in repr_dict.items():
metrics[layer_name] = {}
# Create figure for this layer
plt.figure(figsize=(15, 6))
for idx, (method_name, reducer) in enumerate(vis_methods.items(), 1):
plt.subplot(1, 2, idx)
# Reduce dimensionality
reduced_data = reducer.fit_transform(repr_data)
# Plot
scatter = plt.scatter(reduced_data[:, 0], reduced_data[:, 1],
c=labels, cmap='viridis')
plt.colorbar(scatter)
plt.title(f'{method_name.upper()} - {layer_name}')
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.suptitle(f'{title} - {layer_name}')
plt.tight_layout()
plt.savefig(os.path.join(vis_dir, f'{title}_{layer_name}.png'))
plt.close()
# Compute clustering metrics
from sklearn.metrics import silhouette_score, calinski_harabasz_score
try:
metrics[layer_name]['silhouette'] = silhouette_score(repr_data, labels)
metrics[layer_name]['calinski'] = calinski_harabasz_score(repr_data, labels)
except Exception as e:
print(f"Could not compute metrics for {layer_name}: {e}")
return metrics
def analyze_representation_evolution(model, data, device):
"""Analyze how representations evolve during diffusion process"""
evol_metrics = {
'norm': [],
'cosine_sim': [],
'entropy': []
}
model.eval()
with torch.no_grad():
x = data.x.to(device)
Z = model.input_proj(x)
Z_initial = Z.clone()
# Track initial metrics
evol_metrics['norm'].append(torch.norm(Z, dim=1).mean().item())
evol_metrics['cosine_sim'].append(F.cosine_similarity(Z, Z_initial).mean().item())
# Track evolution through layers
for layer in model.diffusion_layers:
Z = layer(Z)
# Compute metrics
evol_metrics['norm'].append(torch.norm(Z, dim=1).mean().item())
evol_metrics['cosine_sim'].append(F.cosine_similarity(Z, Z_initial).mean().item())
# Compute entropy of pairwise similarities
sim_matrix = torch.matmul(F.normalize(Z, dim=1), F.normalize(Z, dim=1).t())
entropy = -(sim_matrix * torch.log(sim_matrix + 1e-10)).mean().item()
evol_metrics['entropy'].append(entropy)
return evol_metrics
def plot_evolution_metrics(evol_metrics, save_dir, title):
"""Plot representation evolution metrics"""
plt.figure(figsize=(15, 5))
# Plot evolution metrics
for idx, (metric_name, values) in enumerate(evol_metrics.items(), 1):
plt.subplot(1, 3, idx)
plt.plot(values, marker='o')
plt.title(f'{metric_name.replace("_", " ").title()} Evolution')
plt.xlabel('Layer')
plt.ylabel(metric_name)
plt.tight_layout()
plt.savefig(os.path.join(save_dir, f'{title}_evolution_metrics.png'))
plt.close()
def main():
# Configuration
device = torch.device('cuda:2') # Use GPU 2
log_dir = setup_visualization()
# Model configuration
config = {
'hidden_dim': 64,
'num_layers': 2,
'tau': 0.1,
'lambda_reg': 2.0, # Increased regularization
'dropout': 0.3 # Increased dropout
}
visualization_results = {}
for dataset_name in ['Cora', 'CiteSeer']:
try:
# Load and preprocess data
data, num_features, num_classes = load_dataset(dataset_name)
# Initialize model
model = ImprovedDiffusionModel(
input_dim=num_features,
hidden_dim=config['hidden_dim'],
num_classes=num_classes,
num_layers=config['num_layers'],
tau=config['tau'],
lambda_reg=config['lambda_reg'],
dropout=config['dropout']
).to(device)
# Train model
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001)
best_val_acc = 0
for epoch in range(50):
train_loss, train_acc = train_epoch(model, data, optimizer, device)
# Extract and visualize representations
representations = extract_representations(model, data, device)
metrics = visualize_representations(
representations,
data.y.cpu().numpy(),
log_dir,
dataset_name
)
# Analyze representation evolution
evol_metrics = analyze_representation_evolution(model, data, device)
plot_evolution_metrics(evol_metrics, log_dir, dataset_name)
# Store results
visualization_results[dataset_name] = {
'layer_metrics': metrics,
'evolution_metrics': evol_metrics
}
except Exception as e:
print(f"Error processing {dataset_name}: {e}")
continue
# Save comprehensive results
with open(os.path.join(log_dir, 'visualization_results.json'), 'w') as f:
json.dump(visualization_results, f, indent=2)
if __name__ == "__main__":
main()