-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patha2clstm_cartpole.py
180 lines (156 loc) · 6.69 KB
/
a2clstm_cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
import numpy as np
import math
import random
import os
import gym
# delete cart velocity state observation
# made a standard cartpole env as POMDP!!!!!!!!!!!!!!!!!!!
STATE_DIM = 4-1;
ACTION_DIM = 2;
STEP = 5000;
SAMPLE_NUMS = 1000;
TIMESTEP = 8;
A_HIDDEN = 40;
C_HIDDEN = 40;
# actor using a LSTM + fc network architecture to estimate hidden states.
class ActorNetwork(nn.Module):
def __init__(self,in_size,hidden_size,out_size):
super(ActorNetwork, self).__init__()
self.lstm = nn.LSTM(in_size, hidden_size, batch_first = True)
self.fc = nn.Linear(hidden_size,out_size)
def forward(self, x, hidden):
x, hidden = self.lstm(x, hidden)
x = self.fc(x)
x = F.log_softmax(x,2)
return x, hidden
# critic using a LSTM + fc network architecture to estimate hidden states.
class ValueNetwork(nn.Module):
def __init__(self,in_size,hidden_size,out_size):
super(ValueNetwork, self).__init__()
self.lstm = nn.LSTM(in_size, hidden_size, batch_first = True)
self.fc = nn.Linear(hidden_size,out_size)
def forward(self,x, hidden):
x, hidden = self.lstm(x, hidden)
x = self.fc(x)
return x, hidden
def roll_out(actor_network,task,sample_nums,value_network,init_state):
states = []
actions = []
rewards = []
is_done = False
final_r = 0
state = init_state
a_hx = torch.zeros(A_HIDDEN).unsqueeze(0).unsqueeze(0);
a_cx = torch.zeros(A_HIDDEN).unsqueeze(0).unsqueeze(0);
c_hx = torch.zeros(C_HIDDEN).unsqueeze(0).unsqueeze(0);
c_cx = torch.zeros(C_HIDDEN).unsqueeze(0).unsqueeze(0);
for j in range(sample_nums):
states.append(state)
log_softmax_action, (a_hx,a_cx) = actor_network(Variable(torch.Tensor([state]).unsqueeze(0)), (a_hx,a_cx))
softmax_action = torch.exp(log_softmax_action)
action = np.random.choice(ACTION_DIM,p=softmax_action.cpu().data.numpy()[0][0])
one_hot_action = [int(k == action) for k in range(ACTION_DIM)]
next_state,reward,done,_ = task.step(action)
next_state = np.delete(next_state, 1)
#fix_reward = -10 if done else 1
actions.append(one_hot_action)
rewards.append(reward)
final_state = next_state
state = next_state
if done:
is_done = True
state = task.reset()
state = np.delete(state,1)
a_hx = torch.zeros(A_HIDDEN).unsqueeze(0).unsqueeze(0);
a_cx = torch.zeros(A_HIDDEN).unsqueeze(0).unsqueeze(0);
c_hx = torch.zeros(C_HIDDEN).unsqueeze(0).unsqueeze(0);
c_cx = torch.zeros(C_HIDDEN).unsqueeze(0).unsqueeze(0);
#print score while training
print(j+1)
break
if not is_done:
c_out, (c_hx,c_cx) = value_network(Variable(torch.Tensor([final_state])), (c_hx,c_cx))
final_r = c_out.cpu().data.numpy()
return states,actions,rewards,final_r,state
def discount_reward(r, gamma,final_r):
discounted_r = np.zeros_like(r)
running_add = final_r
for t in reversed(range(0, len(r))):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def main():
# init a task generator for data fetching
task = gym.make("CartPole-v0")
init_state = task.reset()
init_state = np.delete(init_state,1)
# init value network
value_network = ValueNetwork(in_size=STATE_DIM, hidden_size=C_HIDDEN, out_size=1)
value_network_optim = torch.optim.Adam(value_network.parameters(),lr=0.01)
# init actor network
actor_network = ActorNetwork(STATE_DIM, A_HIDDEN, ACTION_DIM)
actor_network_optim = torch.optim.Adam(actor_network.parameters(),lr = 0.001)
steps =[]
task_episodes =[]
test_results =[]
for step in range(STEP):
states,actions,rewards,final_r,current_state = roll_out(actor_network,task,SAMPLE_NUMS,value_network,init_state)
init_state = current_state
actions_var = Variable(torch.Tensor(actions).view(-1,ACTION_DIM)).unsqueeze(0)
states_var = Variable(torch.Tensor(states).view(-1,STATE_DIM)).unsqueeze(0)
# train actor network
a_hx = torch.zeros(A_HIDDEN).unsqueeze(0).unsqueeze(0);
a_cx = torch.zeros(A_HIDDEN).unsqueeze(0).unsqueeze(0);
c_hx = torch.zeros(C_HIDDEN).unsqueeze(0).unsqueeze(0);
c_cx = torch.zeros(C_HIDDEN).unsqueeze(0).unsqueeze(0);
actor_network_optim.zero_grad()
# print(states_var.unsqueeze(0).size())
log_softmax_actions, (a_hx,a_cx) = actor_network(states_var, (a_hx,a_cx))
vs, (c_hx,c_cx) = value_network(states_var, (c_hx,c_cx))
vs.detach()
# calculate qs
qs = Variable(torch.Tensor(discount_reward(rewards,0.99,final_r)))
qs = qs.view(1, -1, 1)
advantages = qs - vs
actor_network_loss = - torch.mean(torch.sum(log_softmax_actions*actions_var,1)* advantages)
actor_network_loss.backward()
torch.nn.utils.clip_grad_norm(actor_network.parameters(),0.5)
actor_network_optim.step()
# train value network
value_network_optim.zero_grad()
target_values = qs
a_hx = torch.zeros(A_HIDDEN).unsqueeze(0).unsqueeze(0);
a_cx = torch.zeros(A_HIDDEN).unsqueeze(0).unsqueeze(0);
c_hx = torch.zeros(C_HIDDEN).unsqueeze(0).unsqueeze(0);
c_cx = torch.zeros(C_HIDDEN).unsqueeze(0).unsqueeze(0);
values, (c_hx,c_cx) = value_network(states_var, (c_hx,c_cx))
criterion = nn.MSELoss()
value_network_loss = criterion(values,target_values)
value_network_loss.backward()
torch.nn.utils.clip_grad_norm(value_network.parameters(),0.5)
value_network_optim.step()
# # Testing
# if (step + 1) % 50== 0:
# result = 0
# test_task = gym.make("CartPole-v0")
# for test_epi in range(10):
# state = test_task.reset()
# for test_step in range(200):
# softmax_action = torch.exp(actor_network(Variable(torch.Tensor([state]))))
# #print(softmax_action.data)
# action = np.argmax(softmax_action.data.numpy()[0])
# next_state,reward,done,_ = test_task.step(action)
# result += reward
# state = next_state
# if done:
# break
# print("step:",step+1,"test result:",result/10.0)
# steps.append(step+1)
# test_results.append(result/10)
if __name__ == '__main__':
main()