-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_results.py
67 lines (46 loc) · 1.99 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import matplotlib.pyplot as plt
import numpy as np
import csv
output_folder = "outputs"
output_files = os.listdir(output_folder)
required_output_files = [f for f in output_files if f[:12] == "SVRT Problem"]
required_output_files.sort()
problem_results = {}
column_headers = ["learning_rate","training_data_size","architecture","fold_index","accuracy_after_training","accuracy_of_best_weights"]
for problem_file in required_output_files:
file_path = os.path.join(output_folder, problem_file)
with open(file_path) as f:
results_lines = f.read().split("\n")
results = []
for results_line in results_lines:
if(results_line == ""):
continue
results.append(dict(zip(column_headers, results_line.split(","))))
problem_number = int(problem_file.split(" ")[2].split("_")[0]) #SVRT Problem 1_training_outputs
problem_results[problem_number] = results
problem_numbers = list(range(1,24))
model_name = "vgg16"
training_data_size = "2000"
accuracies = []
for problem_number in problem_numbers:
all_problem_results = problem_results[problem_number]
problem_results_for_experiment = [r for r in all_problem_results if r["architecture"]==model_name and r["training_data_size"]==training_data_size]
problem_accuracies = [float(r["accuracy_of_best_weights"]) for r in problem_results_for_experiment]
accuracies.append(problem_accuracies)
accuracies = np.array(accuracies)
means = accuracies.mean(1)
mins = accuracies.min(1)
maxes = accuracies.max(1)
stds = accuracies.std(1)
plt.errorbar(problem_numbers, means, stds, fmt='ok', lw=3)
plt.errorbar(problem_numbers, means, [means - mins, maxes - means],
fmt='.k', ecolor='gray', lw=1)
# x = np.array([1, 2, 3, 4, 5])
# y = np.power(x, 2) # Effectively y = x**2
# e = np.array([1.5, 2.6, 3.7, 4.6, 5.5])
# plt.errorbar(x, y, e, linestyle='None', marker='^')
plt.show()
means_accuracies = zip(problem_numbers,means)
for m in means_accuracies:
print(m)