-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
195 lines (169 loc) · 8.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import os
import random
import csv
from datetime import datetime
import numpy as np
import gym
import pandas as pd
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from model import GuideVAE
from utils import Dataset,TESTDataset
import pdb
def train(args):
#finish
seed=args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
#finish
env_d4rl_name = args.dataset
batch_size = args.batch_size # training batch size
lr = args.lr # learning rate
max_train_iters = args.max_train_iters
num_updates_per_iter = args.num_updates_per_iter
dataset_path = f'{args.dataset_dir}/{env_d4rl_name}.pkl'
wt_decay = args.wt_decay # weight decay
warmup_steps = args.warmup_steps # warmup steps for lr scheduler
#finish
# saves model and csv in this directory
log_dir = args.log_dir
model_log_dir=log_dir+'/models'
csv_log_dir=log_dir+'/logs'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(model_log_dir):
os.makedirs(model_log_dir)
if not os.path.exists(csv_log_dir):
os.makedirs(csv_log_dir)
#finish
device = torch.device(args.device)
traj_dataset = Dataset(dataset_path, args.context_len,False)
traj_test_dataset = TESTDataset(dataset_path, args.context_len,False)
traj_data_loader = DataLoader(
traj_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
drop_last=True
)
traj_data_test_loader = DataLoader(
traj_test_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
drop_last=True
)
data_iter = iter(traj_data_loader)
data_test_iter = iter(traj_data_test_loader)
#finish
start_time = datetime.now().replace(microsecond=0)
start_time_str = start_time.strftime("%y-%m-%d-%H-%M-%S")
#finish
model_guide = GuideVAE(args.feature_size, args.class_size, args.latent_size).to(device)
optimizer_guide = torch.optim.AdamW(
model_guide.parameters(),
lr=lr,
weight_decay=wt_decay
)
scheduler_guide = torch.optim.lr_scheduler.LambdaLR(
optimizer_guide,
lambda steps: min((steps+1)/warmup_steps, 1)
)
total_updates = 0
for i_iter in range(max_train_iters):
log_GODA_losses = []
if not args.eval:
for _ in range(num_updates_per_iter):
try:
states, actions, rewards = next(data_iter)
except StopIteration:
data_iter = iter(traj_data_loader)
states, actions, rewards = next(data_iter)
states = states.reshape(64,-1).to(device) # B x T x state_dim [64,170]
actions = actions.reshape(64,-1).to(device) # B x T x act_dim [64,60]
rewards = rewards.reshape(64,-1).to(device) # [64,10]
#此处需要将三个变量合并起来
feature = torch.cat([states[:,0:85],actions[:,0:30],rewards[:,0:5]],dim=1) #s1a1r1~s5a5r5
feature_class = torch.cat([states[:,85:170],actions[:,30:60],rewards[:,5:10]],dim=1) #s6a6r6~s10a10r10
# states_target = torch.clone(states).detach().to(device)
# actions_target = torch.clone(actions).detach().to(device)
# rewards_target = torch.clone(rewards).detach().to(device)
recon_mu, recon_std, z1_mu, z1_log_std = model_guide.forward(feature, feature_class)
z2_mu, z2_log_std = model_guide.reconstruct(feature)
GODA_loss = model_guide.loss_function(recon_mu, recon_std, feature_class, z1_mu, z1_log_std, z2_mu, z2_log_std)
optimizer_guide.zero_grad()
GODA_loss.backward()
torch.nn.utils.clip_grad_norm_(model_guide.parameters(), 0.25)
optimizer_guide.step()
scheduler_guide.step()
log_GODA_losses.append(GODA_loss.detach().cpu().item())
mean_GODA_loss = np.mean(log_GODA_losses)
total_updates += num_updates_per_iter
log_str = (
"num of updates: " + str(total_updates) + '\n' +
"GODA loss: " + format(mean_GODA_loss, ".5f") + '\n'
)
print(log_str)
#Test the training result
# final_GODA_loss=[]
# for _ in range(num_updates_per_iter):
# try:
# states, actions, rewards = next(data_test_iter)
# except StopIteration:
# data_test_iter = iter(traj_data_test_loader)
# states, actions, rewards = next(data_test_iter)
# states = states.to(device) # B x T x state_dim
# actions = actions.to(device) # B x T x act_dim
# rewards = rewards.to(device)
# states_target = torch.clone(states).detach().to(device)
# actions_target = torch.clone(actions).detach().to(device)
# rewards_target = torch.clone(rewards).detach().to(device)
# new_states_log_probs, new_actions_log_probs, new_rewards_log_probs = \
# model.forward(states, actions, rewards, states_target, actions_target, rewards_target)
# GODA_loss = -torch.mean(new_states_log_probs) - torch.mean(new_actions_log_probs) - torch.mean(new_rewards_log_probs)
# final_GODA_loss.append(GODA_loss.detach().cpu().item())
# mean_GODA_final_loss = np.mean(final_GODA_loss)
# log_str = (
# "GODA test loss: " + format(mean_GODA_final_loss, ".5f") + '\n'
# )
# print(log_str)
# new_states_mean, new_actions_mean, new_rewards_mean = \
# model.get_value(states, actions, rewards, states_target, actions_target, rewards_target)
# new_states_mean = pd.DataFrame(new_states_mean.detach().cpu())
# new_actions_mean = pd.DataFrame(new_actions_mean.detach().cpu())
# new_rewards_mean = pd.DataFrame(new_rewards_mean.detach().cpu())
# new_states_mean.to_csv("~/code/GODA/yuce/new_states_mean.csv")
# new_actions_mean.to_csv("~/code/GODA/yuce/new_actions_mean.csv")
# new_rewards_mean.to_csv("~/code/GODA/yuce/new_rewards_mean.csv")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='HalfCheetah-v3')
parser.add_argument('--seed',type=int, default=0)
parser.add_argument('--dataset_dir', type=str, default='data/')
parser.add_argument('--dataset', type=str, default='halfcheetah_medium-v2')
parser.add_argument('--log_dir', type=str, default='logs/sdt_runs/')
parser.add_argument('--log_fn',type=str,default='default')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--load_model_path', type=str,default='')
parser.add_argument('--squences_length', type=int, default=10)
parser.add_argument('--recovery_length', type=int, default=5)
parser.add_argument('--context_len', type=int, default=10)
parser.add_argument('--total_episodes', type=int, default=2186)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--max_train_iters', type=int, default=30)
parser.add_argument('--num_updates_per_iter', type=int, default=2000)
parser.add_argument('--device', type=str, default='cuda')
# parser.add_argument('--log_fn',type=str,default='default')
parser.add_argument('--wt_decay', type=float, default=1e-4)
parser.add_argument('--warmup_steps', type=int, default=10000)
parser.add_argument('--feature_size', type=int, default=120)
parser.add_argument('--class_size', type=int, default=120)
parser.add_argument('--latent_size', type=int, default=32)
args = parser.parse_args()
train(args)