-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_data.py
48 lines (38 loc) · 1.55 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
import numpy as np
import random
from PIL import Image
from tqdm import tqdm
action_list = [[0, 1], [0, -1], [1, 0], [-1, 0]]
def random_walk(canvas, ini_x, ini_y, length):
x = ini_x
y = ini_y
img_size = canvas.shape[-1]
x_list = []
y_list = []
for i in range(length):
r = random.randint(0, len(action_list) - 1)
x = np.clip(x + action_list[r][0], a_min=0, a_max=img_size - 1)
y = np.clip(y + action_list[r][1], a_min=0, a_max=img_size - 1)
x_list.append(x)
y_list.append(y)
canvas[np.array(x_list), np.array(y_list)] = 0
return canvas
if __name__ == '__main__':
import os
parser = argparse.ArgumentParser()
parser.add_argument('--image_size', type=int, default=256) #shivam: changed 512 to 256 for celebhq
parser.add_argument('--N', type=int, default=30000)
parser.add_argument('--save_dir', type=str, default='masks')
args = parser.parse_args()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
start, end = [int(j) for j in input().split()]
for i in tqdm(range(start,end+1)):
canvas = np.ones((args.image_size, args.image_size)).astype("i")
ini_x = random.randint(0, args.image_size - 1)
ini_y = random.randint(0, args.image_size - 1)
mask = random_walk(canvas, ini_x, ini_y, args.image_size ** 2)
# print("save:", i, np.sum(mask))
img = Image.fromarray(mask * 255).convert('1')
img.save('{:s}/{:05d}.jpg'.format(args.save_dir, i)) #shivam: changed 06d to 05d for celebhq