-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracking.m
217 lines (202 loc) · 6.79 KB
/
tracking.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
clc
clear
close all
run('D:/Softwares/vlfeat-0.9.20/toolbox/vl_setup');
load('weights.mat');
load('offsets.mat');
load('vocabulary.mat');
hVideoSrc = vision.VideoFileReader('Landing2.mp4');
hVideoOut = vision.VideoPlayer;
shapeInserter = vision.ShapeInserter;
tracker = vision.PointTracker('MaxBidirectionalError',2);
iter = 1;
frame = 0;
x = 205;y = 160;h = 15; w = 25;
old_bboxes = {};
new_bboxes = {};
bboxes = {};
begin = 1;
temp = 0;
consistent_box = [];
while ~isDone(hVideoSrc)
RGB = step(hVideoSrc);
% imshow(RGB);
frame = frame + 1;
if(~temp)
new_bboxes = detection(RGB,vocabulary,weights,offsets);
if(size(new_bboxes,1) == 0)
continue;
end
else
c_i = imcrop(RGB,crop);
features = extract_features(c_i,vocabulary);
[plane,score] = classify(features,weights,offsets);
if(~plane)
fprintf('Plane box not classified as true\n');
%begin = 1;
%temp = 0;
else
fprintf('Plane box classified as true');
end
end
RGB = rgb2gray(RGB);
[bboxes,consistent_box] = consistency(new_bboxes,old_bboxes);
%bboxes{1,1};
%bboxes{1,2};
old_bboxes = bboxes
if ( size(consistent_box,2) == 4 && begin == 1 && temp == 0)
fprintf('Consistency Begin \n');
PTS = consistent_box;
x = PTS(1);y = PTS(2);w = PTS(3);h = PTS(4);
J = step(shapeInserter,RGB,PTS);
imshow(J);
corners = detectMinEigenFeatures(RGB, 'ROI', PTS, 'MinQuality', 0.0001);
hold on;
plot(corners.selectStrongest(200));
initialize(tracker,corners.Location,RGB);
bboxPoints = [x, y; x+w, y; x+w, y+h; x, y+h];
p_bboxPoints = bboxPoints;
crop = bbox_to_roi(bboxPoints);
oldPoints = corners.Location;
begin = 0;temp = 1;
elseif(temp)
[points, validity] = step(tracker,RGB);
visiblePoints = points(validity, :);
oldInliers = oldPoints(validity, :);
if size(visiblePoints, 1) >= 2 % need at least 2 points
% Estimate the geometric transformation between the old points
% and the new points and eliminate outliers
[xform, oldInliers, visiblePoints] = estimateGeometricTransform(...
oldInliers, visiblePoints, 'similarity', 'MaxDistance', 4);
% Apply the transformation to the bounding box points
p_bboxPoints = bboxPoints;
bboxPoints = transformPointsForward(xform, bboxPoints);
crop = bbox_to_roi(bboxPoints);
bboxPolygon = reshape(bboxPoints', 1, []);
RGB = insertShape(RGB, 'Polygon', bboxPolygon, ...
'LineWidth', 2);
RGB = insertMarker(RGB, visiblePoints, '+', ...
'Color', 'white');
RGB = rgb2gray(RGB);
oldPoints = visiblePoints;
setPoints(tracker, oldPoints);
else
release(tracker);
release(shapeInserter);
fprintf("Releasing Tracker\n");
begin = 1;temp = 0;
end
end
step(hVideoOut, RGB);
end
function [cell_bboxes,consistent_box] = consistency(new_bboxes,old_bboxes)
fprintf('Checking consistency\n');
cell_bboxes = {};
consistent_box = [];
if(size(old_bboxes) == 0)
cell_bboxes = new_bboxes;
return
end
num_new = size(new_bboxes{1,1},1);
num_old = size(old_bboxes{1,1},1);
bboxes = [];
scores = [];
n = 1;
for i = 1:num_new
a1 = [new_bboxes{1,1}(i,1),new_bboxes{1,1}(i,2)];
for j = 1:num_old
a2 = [old_bboxes{1,1}(j,1),new_bboxes{1,1}(j,2)];
dist = pdist([a1;a2],'euclidean')
if(dist < 56)
fprintf('Match\n');
bboxes = [bboxes;new_bboxes{1,1}(i,:)];
old_bboxes{1,2}(j,1)
scores = [scores;old_bboxes{1,2}(j,1) + 1]
end
end
end
[M,I] = max(scores);
if(M(1) > 1)
fprintf('Consistent with score of : %d\n', M(1));
consistent_box = bboxes(I(1),:)
end
cell_bboxes = {};
cell_bboxes{1,1} = bboxes;
cell_bboxes{1,2} = scores;
end
function roi_pts = bbox_to_roi(bbox_pts)
x = bbox_pts(1,1); y = bbox_pts(1,2);
w = bbox_pts(2,1) - bbox_pts(1,1);
h = bbox_pts(3,2) - bbox_pts(2,2);
roi_pts = [x,y,w,h];
end
function bboxes = detection(img,vocabulary,weights,offsets)
fprintf('Detection Happening\n');
bboxes = {};
original = img;
i = 1; j = 1;
i_n = 1;
bbox ={};
scores = [];
images_tried = 0;
for scale = 1:-0.1:1
img = imresize(original,scale);
max_y = size(img,2); max_x = size(img,1);
s_h = 20;s_w = 45;
for i = max_x/2:10:(max_x/2 + max_x/4)
for j = 1:10:max_y - s_w
crop = [j,i,s_w,s_h] ;
c_i = imcrop(img, crop);
features = extract_features(c_i,vocabulary);
[plane,score] = classify(features,weights,offsets);
if(plane)
i_n
scores = [scores;score];
crop = [(crop(1)/scale), (crop(2)/scale), (crop(3)/scale),(crop(4)/scale)];
bbox{i_n,1} = crop;
i_n = i_n + 1;
end
plane = 0;
images_tried = images_tried + 1;
end
end
images_tried
images_tried = 0;
end
bbox = cell2mat(bbox);
if(size(bbox,1) == 0)
return ;
end
[selectedBbox] = selectStrongestBbox(bbox,scores,'RatioType','Min','OverlapThreshold',0.2);
img = original;
for i = 1:size(selectedBbox,1)
img = insertShape(img,'rectangle',selectedBbox(i,:),'LineWidth',1);
end
imshow(img);
bboxes{1,1} = selectedBbox;
bboxes{1,2} = zeros(size(selectedBbox,1),1);
end
function [plane,score] = classify(features,weights,offsets)
training_score = [];
for i = 1:2
training_score = [training_score; weights{i}'*features' + offsets{i}];
end
[~,label_indices] = max(training_score);
if (label_indices == 2)
score = training_score(label_indices);
plane = 1;
else
plane = 0;
score = 0;
end
end
function [features] = extract_features(img,vocabulary)
img = im2single(rgb2gray(img));
vocab_size = size(vocabulary, 1);
[~, features] = vl_dsift(img, 'Fast', 'Step', 4);
features = single(features);
[indices] = knnsearch(vocabulary, features');
imhist=histc(indices, 1:vocab_size);
imhist_norm=imhist./numel(imhist);
features = imhist_norm';
end