-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
33 lines (27 loc) · 1.12 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import glob
import argparse
import cv2
from app.controller.BLPR import get_algorithm
def predict(opt):
algorithm = get_algorithm()
list_images = []
for ext in opt.img_exts:
list_images += glob.glob(os.path.join(opt.data, '*.{}'.format(ext)))
with open(opt.save_path, 'w') as fw:
for image_path in list_images:
img = cv2.imread(image_path)
image_name = os.path.basename(image_path)
#image_name = os.path.split(image_path)[-1]
result = algorithm.process(org_img=img)
fw.write(f'{image_name}')
for index, plate in enumerate(result.plates):
#cv2.imwrite(f'{index}.jpg', plate)
cv2.imwrite(os.path.join('./results', f'{image_name}'), plate)
fw.write('\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='data/images/', help='source folder')
parser.add_argument('--img_exts', default=['jpg', 'jpeg', 'png'], nargs='+')
parser.add_argument('--save_path', default='data/result.txt')
predict(parser.parse_args())