-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
164 lines (132 loc) · 6.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import cv2
import os
from ultralytics import YOLO
import numpy as np
import string
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
from utils import CTCLabelConverter, AttnLabelConverter
from dataset import RawDataset, AlignCollate
from model import Model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def crop_rotated_rectangle_with_points(image, points):
def sort_points(points):
s = points.sum(axis=1)
diff = np.diff(points, axis=1)
sorted_points = np.zeros((4, 2), dtype="float32")
sorted_points[0] = points[np.argmin(s)]
sorted_points[1] = points[np.argmax(s)]
sorted_points[2] = points[np.argmin(diff)]
sorted_points[3] = points[np.argmax(diff)]
return sorted_points
points = np.array(points, dtype="float32")
sorted_points = sort_points(points)
(tl, bl, br, tr) = sorted_points
width = int(max(np.linalg.norm(tr - br), np.linalg.norm(tl - bl)))
height = int(max(np.linalg.norm(tr - tl), np.linalg.norm(br - bl)))
dst = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]], dtype='float32')
M = cv2.getPerspectiveTransform(sorted_points, dst)
warped = cv2.warpPerspective(image, M, (width, height))
return warped
def text_detection(image_path, model_path, output_folder):
if not os.path.exists(output_folder):
os.makedirs(output_folder)
image = cv2.imread(image_path)
model = YOLO(model=model_path, task="obb")
results = model.predict(image)
for result in results:
bounding_boxes = result.obb.xyxyxyxy.numpy()
for i, bounding_box in enumerate(bounding_boxes):
points = bounding_box.reshape(4, 2)
cropped_image = crop_rotated_rectangle_with_points(image, points)
cropped_image_name = f"{os.path.splitext(os.path.basename(image_path))[0]}_cropped_{i}.jpg"
output_file = os.path.join(output_folder, cropped_image_name)
cv2.imwrite(output_file, cropped_image)
def demo(opt):
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model).to(device)
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
demo_data = RawDataset(root=opt.image_folder, opt=opt)
demo_loader = torch.utils.data.DataLoader(
demo_data, batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_demo, pin_memory=True)
model.eval()
with torch.no_grad():
for image_tensors, image_path_list in demo_loader:
batch_size = image_tensors.size(0)
image = image_tensors.to(device)
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred)
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, preds_size)
else:
preds = model(image, text_for_pred, is_train=False)
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
log = open(f'./log_demo_result.txt', 'a')
dashed_line = '-' * 80
head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score'
print(f'{dashed_line}\n{head}\n{dashed_line}')
log.write(f'{dashed_line}\n{head}\n{dashed_line}\n')
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
for img_name, pred, pred_max_prob in zip(image_path_list, preds_str, preds_max_prob):
if 'Attn' in opt.Prediction:
pred_EOS = pred.find('[s]')
pred = pred[:pred_EOS]
pred_max_prob = pred_max_prob[:pred_EOS]
confidence_score = pred_max_prob.cumprod(dim=0)[-1]
print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}')
log.write(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n')
log.close()
def main(image_path, model_path, output_folder):
text_detection(image_path, model_path, output_folder)
demo_args = argparse.Namespace(
image_folder=output_folder,
workers=4,
batch_size=192,
saved_model=model_path,
batch_max_length=25,
imgH=32,
imgW=100,
rgb=False,
character='0123456789',
sensitive=False,
PAD=False,
Transformation='TPS',
FeatureExtraction='VGG',
SequenceModeling='BiLSTM',
Prediction='Attn',
num_fiducial=20,
input_channel=1,
output_channel=512,
hidden_size=256
)
demo(demo_args)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Crop objects detected in an image using YOLOv8OBB and perform text recognition")
parser.add_argument("--image", required=True, help="Path to the input image")
parser.add_argument("--model", required=True, default="weights/Textdetect.pt", help="Path to the YOLOv8OBB model")
parser.add_argument("--output_folder", default="demo_image", required=True, help="Path to the output folder")
args = parser.parse_args()
main(args.image, args.model, args.output_folder)