-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_yolov8.py
80 lines (65 loc) · 3.23 KB
/
test_yolov8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from ultralytics import YOLO
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
def rotate_if_vertical(image_folder):
for filename in os.listdir(image_folder):
# Đọc ảnh từ thư mục
image_path = os.path.join(image_folder, filename)
image = cv2.imread(image_path)
if image is None:
print(f"Failed to read image: {image_path}")
continue
# Kiểm tra nếu ảnh là hình chữ nhật đứng
height, width = image.shape[:2]
print("H W : %d %d" % (height, width))
if height > width:
rotated_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
# Ghi đè lên tệp ảnh gốc
cv2.imwrite(image_path, rotated_image)
print(f"Rotated {filename} and saved as {image_path}")
else:
print(f"{filename} is not vertical. No rotation needed.")
def rotate_and_crop_images(image_folder):
output_folder = "cropped_images"
os.makedirs(output_folder, exist_ok=True)
model = YOLO(model='/content/model/ocr.pt', task="obb")
for image_name in os.listdir(image_folder):
if image_name.endswith(('.jpg', '.jpeg', '.png', '.bmp')):
image_path = os.path.join(image_folder, image_name)
image = cv2.imread(image_path)
results = model.predict(image)
def sort_points(points):
s = points.sum(axis=1)
diff = np.diff(points, axis=1)
sorted_points = np.zeros((4, 2), dtype="float32")
sorted_points[0] = points[np.argmin(s)]
sorted_points[2] = points[np.argmax(s)]
sorted_points[1] = points[np.argmin(diff)]
sorted_points[3] = points[np.argmax(diff)]
return sorted_points
def crop_rotated_rectangle_with_points(image, points):
points = np.array(points, dtype="float32")
sorted_points = sort_points(points)
(tl, bl, br, tr) = sorted_points
width = int(max(np.linalg.norm(tr - br), np.linalg.norm(tl - bl)))
height = int(max(np.linalg.norm(tr - tl), np.linalg.norm(br - bl)))
dst = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]], dtype='float32')
M = cv2.getPerspectiveTransform(sorted_points, dst)
warped = cv2.warpPerspective(image, M, (width, height))
return warped
for result in results:
bounding_boxes = result.obb.xyxyxyxy.numpy()
for i, bounding_box in enumerate(bounding_boxes):
points = bounding_box.reshape(4, 2)
cropped_image = crop_rotated_rectangle_with_points(image, points)
cropped_image_name = f"{os.path.splitext(image_name)[0]}_cropped_{i}.jpg"
output_file = os.path.join(output_folder, cropped_image_name)
cv2.imwrite(output_file, cropped_image)
plt.figure(figsize=(6, 6))
plt.imshow(cropped_image)
plt.axis('off')
plt.show()
rotate_if_vertical(output_folder)
rotate_and_crop_images("/content/test_img")