-In the setting of missing response, we let ``\boldsymbol{P}`` be the ``nd \times nd`` permutation matrix such that ``\boldsymbol{P} \cdot \text{vec}\ \boldsymbol{Y} = \begin{bmatrix} \boldsymbol{y}_{\text{obs}} \\ \boldsymbol{y}_{\text{mis}} \end{bmatrix}``, where ``\boldsymbol{y}_{\text{obs}}`` and ``\boldsymbol{y}_{\text{mis}}`` are vectors of observed and missing response values, respectively, in column-major order. If we also let ``\boldsymbol{P} \boldsymbol{\Omega} \boldsymbol{P}^T = \begin{bmatrix} \boldsymbol{\Omega}_{11} & \boldsymbol{\Omega}_{12} \\ \boldsymbol{\Omega}_{21} & \boldsymbol{\Omega}_{22} \end{bmatrix}`` and ``\boldsymbol{P} \cdot\text{vec}(\boldsymbol{X}\boldsymbol{B}) = \begin{bmatrix} \boldsymbol{\mu}_{1} \\ \boldsymbol{\mu}_{2} \end{bmatrix}`` such that conditional mean and variance are ``\boldsymbol{\mu}_2 + \boldsymbol{\Omega}_{21}\boldsymbol{\Omega}_{11}^{-1}(\boldsymbol{y}_{\text{obs}}-\boldsymbol{\mu}_1)`` and ``\boldsymbol{\Omega}_{22} - \boldsymbol{\Omega}_{21}\boldsymbol{\Omega}_{11}^{-1}\boldsymbol{\Omega}_{12}``, respectively, then the adjusted MM updates in each interation become
0 commit comments