forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nestedtensor.py
2325 lines (2047 loc) · 103 KB
/
test_nestedtensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: nestedtensor"]
import unittest
import numpy as np
import torch
import torch.nn
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
onlyCPU,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_dtype import floating_types_and_half
from torch.testing._internal.common_utils import (
freeze_rng_state,
gradcheck,
instantiate_parametrized_tests,
IS_FBCODE,
parametrize,
run_tests,
subtest,
TestCase,
)
# Tests are ported from pytorch/nestedtensor.
# This makes porting as_nested_tensor easier in the future.
def _iter_constructors():
# yield as_nested_tensor
yield torch.nested.nested_tensor
# Helper function to generate a pair of random nested tensors
# one is contiguous, the other is not, but they appear to have same entries
# an output nested tensor consists of
# * `len(ragged_sizes)` matrices
# * matrices[i].shape == (20, ragged_sizes[i])
def random_nt_noncontiguous_pair(ragged_sizes, device="cpu", dtype=torch.float16):
xs = []
for size in ragged_sizes:
xs.append(torch.randn((size, 20), device=device, dtype=dtype))
# contiguous nested tensor
ys = []
for x in xs:
ys.append(x.transpose(-1, -2))
nt_contiguous = torch.nested.nested_tensor(ys)
# noncontiguous nested tensor
n = len(ragged_sizes)
nt_noncontiguous = torch.nested.nested_tensor(xs).transpose(-1, -2)
return nt_contiguous, nt_noncontiguous
# Helper functions to pad a noncontiguous nested tensor
# can be replaced once to_padded_tensor supports noncontiguous memory
def noncontiguous_to_padded_tensor(input, shape=None):
tensors = input.unbind()
ntensors = len(tensors)
assert ntensors > 0
if shape is None:
shape = []
for size in tensors[0].shape:
shape.append(size)
for i in range(1, ntensors):
new_shape = tensors[i].shape
for j in range(len(shape)):
shape[j] = max(shape[j], new_shape[j])
shape = [ntensors] + shape
result = tensors[0].new_zeros(shape)
for itensor in range(ntensors):
tensor = tensors[itensor]
view = result[itensor]
for idim in range(tensor.dim()):
view = view.narrow(idim, 0, tensor.size(idim))
view.copy_(tensor)
return result
# Helper function to generate a random nested tensor
def random_nt(device, dtype, num_tensors, max_dims, min_dims=None):
if min_dims is None:
min_dims = tuple([0] * len(max_dims))
ts1 = []
for _ in range(num_tensors):
tensor_dims = tuple([torch.randint(low=min_dim, high=max_dim, size=(1,)).item()
for (min_dim, max_dim) in zip(min_dims, max_dims)])
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
ts1.append(t1)
return torch.nested.nested_tensor(ts1, device=device, dtype=dtype)
class TestNestedTensor(TestCase):
@parametrize("batch_size", [2, 4])
@parametrize("max_seq_len", [3, 5])
@parametrize("vocab_size", [10, 20])
def test_2d_nested_tensor(self, batch_size, max_seq_len, vocab_size):
data = []
nested_tensor_ref_list = []
for _ in range(batch_size):
if max_seq_len == 0:
length = 0
else:
length = np.random.randint(low=1, high=max_seq_len)
row = list(np.random.randint(low=0, high=vocab_size, size=(length,)))
data.append(row)
nested_tensor_ref_list.append(torch.tensor(row))
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64)
nested_tensor_list = nested_tensor.unbind()
for id in range(batch_size):
self.assertEqual(
nested_tensor_list[id],
nested_tensor_ref_list[id].type(torch.int64)
)
@parametrize("batch_size", [2, 4])
@parametrize("max_seq_len", [3, 5])
@parametrize("vocab_size", [10, 20])
def test_3d_nested_tensor(self, batch_size, max_seq_len, vocab_size):
data = []
nested_tensor_ref_list = []
for _ in range(batch_size):
if max_seq_len == 0:
length = 0
else:
length = np.random.randint(low=1, high=max_seq_len)
row = list(np.random.randint(low=0, high=vocab_size, size=(length,)))
row = [list(item * np.arange(max_seq_len)) for item in row]
data.append(row)
nested_tensor_ref_list.append(torch.Tensor(row))
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64)
nested_tensor_list = nested_tensor.unbind()
for id in range(batch_size):
self.assertEqual(
nested_tensor_list[id],
nested_tensor_ref_list[id].type(torch.int64)
)
@parametrize("batch_size", [2, 4])
@parametrize("max_seq_len", [3, 5])
@parametrize("vocab_size", [10, 20])
def test_3d_nested_tensor_float(self, batch_size, max_seq_len, vocab_size):
data = []
nested_tensor_ref_list = []
for _ in range(batch_size):
if max_seq_len == 0:
length = 0
else:
length = np.random.randint(low=1, high=max_seq_len)
row = list(
np.random.randint(low=0, high=vocab_size, size=(length,)).astype(float)
)
row = [list(item * np.arange(max_seq_len)) for item in row]
data.append(row)
nested_tensor_ref_list.append(torch.Tensor(row))
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.float)
nested_tensor_list = nested_tensor.unbind()
for id in range(batch_size):
self.assertEqual(
nested_tensor_list[id],
nested_tensor_ref_list[id].type(torch.float)
)
@torch.inference_mode()
def _test_unbind_case(self, a, b):
nt = torch.nested.nested_tensor([a, b])
a1, b1 = nt.unbind()
self.assertTrue(a is not a1)
self.assertTrue(b is not b1)
nt = torch.nested.nested_tensor([a, b], dtype=a.dtype)
a1, b1 = nt.unbind(0)
self.assertEqual(a, a1)
self.assertEqual(b, b1)
a = torch.randn((2, 3)).add_(1)
nt = torch.nested.nested_tensor([a])
self.assertEqual(a, nt.unbind(0)[0])
@torch.inference_mode()
def test_unbind_0(self):
self._test_unbind_case(
torch.tensor([1, 2]), torch.tensor([7, 8]),
)
@torch.inference_mode()
def test_unbind_1(self):
self._test_unbind_case(
torch.tensor([1]), torch.tensor([7]),
)
@torch.inference_mode()
def test_unbind_3(self):
self._test_unbind_case(
torch.tensor([1.0]), torch.tensor([]),
)
@torch.inference_mode()
def test_unbind_4(self):
self._test_unbind_case(
torch.tensor([]), torch.tensor([]),
)
@torch.inference_mode()
def test_unbind_dim(self):
def _test_fn(unbind_fn):
a = torch.rand(3, 2)
b = torch.rand(2, 3)
nt = torch.nested.nested_tensor([a, b])
self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1))
# Both of these tests are necessary, because we're using
# torch_function.
_test_fn(lambda x, dim: x.unbind(dim))
# TODO: Re-enable this once using torch_dispatch
# _test_fn(lambda x, dim: torch.unbind(x, dim))
@torch.inference_mode()
def test_nested_tensor(self):
self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(torch.tensor([3.0])))
self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(4.0))
@torch.inference_mode()
def test_nested_tensor_matching_dim(self):
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.",
lambda: torch.nested.nested_tensor([torch.tensor(1.0), torch.tensor([])]),
)
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.",
lambda: torch.nested.nested_tensor(
[torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])]
),
)
@torch.inference_mode()
def test_default_nested_tensor(self):
self.assertRaises(TypeError, lambda: torch.nested.nested_tensor())
default_nested_tensor = torch.nested.nested_tensor([])
default_tensor = torch.tensor([])
# self.assertEqual(default_nested_tensor.nested_dim(), 1)
# self.assertEqual(default_nested_tensor.nested_size(), ())
self.assertEqual(default_nested_tensor.dim(), default_tensor.dim())
self.assertEqual(default_nested_tensor.layout, default_tensor.layout)
self.assertEqual(default_nested_tensor.device, default_tensor.device)
self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype)
self.assertEqual(
default_nested_tensor.requires_grad, default_tensor.requires_grad
)
self.assertIsNone(default_tensor.grad)
# TODO: Re-enable once we have a performance driven
# use case and implementation.
# self.assertEqual(default_nested_tensor.is_pinned(),
# default_tensor.is_pinned())
@torch.inference_mode()
def test_dim(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor(3.0)])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor([1, 2, 3, 4])])
self.assertEqual(a1.dim(), 2)
@unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.")
@torch.inference_mode()
def test_numel(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertEqual(a1.numel(), 0)
a1 = constructor([torch.tensor(3.0), torch.tensor(4.0)])
self.assertEqual(a1.numel(), 2)
a1 = constructor([torch.randn(2, 2, 2)])
self.assertEqual(a1.numel(), 8)
a1 = constructor([torch.randn([1, 2, 3]), torch.randn(3, 2, 1)])
self.assertEqual(a1.numel(), 12)
a1 = constructor([torch.randn([1, 1, 3]), torch.randn(3, 2, 4)])
self.assertEqual(a1.numel(), 27)
a1 = constructor([torch.randn([5, 5, 5]), torch.randn(6, 6, 6)])
self.assertEqual(a1.numel(), 341)
# Interesting edge case
a1 = constructor([torch.randn([1, 2, 3]), torch.randn(1, 2, 0)])
self.assertEqual(a1.numel(), 6)
@torch.inference_mode()
def test_size(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"NestedTensorImpl doesn't support sizes",
lambda: a1.size(),
)
def test_size_dim(self):
a = torch.nested.nested_tensor([])
self.assertEqual(a.size(0), 0)
a = torch.nested.nested_tensor([torch.tensor(1)])
self.assertEqual(a.size(0), 1)
a = torch.nested.nested_tensor([torch.tensor(1), torch.tensor(2)])
self.assertEqual(a.size(0), 2)
a = torch.nested.nested_tensor([torch.rand(1, 2),
torch.rand(1, 8)])
self.assertEqual(a.size(0), 2)
self.assertEqual(a.size(1), 1)
self.assertRaisesRegex(
RuntimeError, "Given dimension 2 is irregular and does not have a size", lambda: a.size(2))
a = torch.nested.nested_tensor([torch.rand(3, 4),
torch.rand(5, 4)])
self.assertEqual(a.size(0), 2)
self.assertRaisesRegex(
RuntimeError, "Given dimension 1 is irregular and does not have a size", lambda: a.size(1))
self.assertEqual(a.size(2), 4)
@unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.")
@torch.inference_mode()
def test_stride(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"NestedTensorImpl doesn't support strides",
lambda: a1.stride(),
)
@unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.")
@torch.inference_mode()
def test_is_contiguous(self):
# Test empty case
nt_empty = torch.nested.nested_tensor([])
assert nt_empty.is_contiguous()
self.assertEqual(nt_empty, nt_empty.contiguous())
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7))
# Test contiguous case
assert nt_contiguous.is_contiguous()
self.assertEqual(nt_contiguous, nt_contiguous.contiguous())
# Test non_contiguous case
assert not nt_noncontiguous.is_contiguous()
self.assertEqual(nt_contiguous, nt_noncontiguous.contiguous())
@torch.inference_mode()
def test_repr_string(self):
a = torch.nested.nested_tensor([])
expected = "nested_tensor([" "\n\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = torch.nested.nested_tensor([torch.tensor(1.0)])
expected = "nested_tensor([" "\n tensor(1.)" "\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = torch.nested.nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])])
expected = (
"nested_tensor([" "\n tensor([[1, 2]])" "," "\n tensor([[4, 5]])" "\n])"
)
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
def test_to_padded_tensor_on_empty_tensor(self):
nt = torch.nested.nested_tensor([])
empty = torch.nested.to_padded_tensor(nt, 4)
self.assertEqual(empty, torch.tensor([]))
def test_nested_namespace(self):
nt = torch.nested.nested_tensor([torch.randn(2, 3), torch.randn(4, 5)])
result = nt.to_padded_tensor(4)
nested_namespace_result = torch.nested.to_padded_tensor(nt, 4)
self.assertEqual(result, nested_namespace_result)
def test_to(self):
ntensors = 4
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
def test_copy_behavior(t, non_blocking=False):
self.assertIs(t, t.to(t, non_blocking=non_blocking))
self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking))
self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking))
self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True))
devices = [t.device]
if t.device.type == 'cuda':
if t.device.index == -1:
devices.append('cuda:{}'.format(torch.cuda.current_device()))
elif t.device.index == torch.cuda.current_device():
devices.append('cuda')
for device in devices:
self.assertIs(t, t.to(device, non_blocking=non_blocking))
self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking))
self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True))
test_copy_behavior(nt)
self.assertEqual(nt.device, nt.to('cpu').device)
self.assertEqual(nt.device, nt.to('cpu', dtype=torch.float32).device)
self.assertIs(torch.float32, nt.to('cpu', dtype=torch.float32).dtype)
self.assertEqual(nt.device, nt.to(torch.float32).device)
self.assertIs(torch.float32, nt.to(dtype=torch.float32).dtype)
def test_data_ptr(getter):
self.assertEqual(getter(nt), getter(nt.to('cpu')))
self.assertEqual(getter(nt), getter(nt.to(dtype=nt.dtype, device=nt.device, copy=False)))
self.assertEqual(getter(nt), getter(nt.to('cpu', copy=False)))
self.assertNotEqual(getter(nt), getter(nt.to('cpu', copy=True)))
test_data_ptr(lambda nt: nt.data_ptr())
if torch.cuda.is_available():
for non_blocking in [True, False]:
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
nt2 = random_nt(cuda, torch.float32, ntensors, (4, 4))
test_copy_behavior(nt2, non_blocking)
self.assertEqual(nt2.device, nt2.to(cuda, non_blocking=non_blocking).device)
self.assertEqual(nt.device, nt2.to('cpu', non_blocking=non_blocking).device)
self.assertEqual(nt2.device, nt.to(cuda, non_blocking=non_blocking).device)
self.assertIs(torch.int32, nt2.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype)
self.assertEqual(nt.device, nt2.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device)
self.assertIs(torch.int32, nt2.to(dtype=torch.int32).dtype)
self.assertEqual(nt2.device, nt2.to(dtype=torch.int32).device)
def test_copy_(self):
ntensors = 4
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
nt_copy = torch.empty_like(nt)
nt_copy.copy_(nt)
for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy):
self.assertEqual(nt_ub, nt_copy_ub)
nt_error = torch.nested.nested_tensor([torch.tensor([0, 0])])
self.assertRaisesRegex(
RuntimeError,
"copy_ only supports tensors that are the same size for Nested implementations",
lambda: nt_error.copy_(nt)
)
if torch.cuda.is_available():
nt = random_nt(torch.device('cuda'), torch.float32, ntensors, (4, 4))
nt_copy = torch.empty_like(nt, device=torch.device('cpu'))
nt_copy.copy_(nt, non_blocking=True)
torch.cuda.current_stream(torch.cuda.current_device()).synchronize()
for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy):
self.assertEqual(nt_ub, nt_copy_ub)
nt_copy = torch.empty_like(nt, device=torch.device('cpu'))
nt_copy.copy_(nt, non_blocking=False)
for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy):
self.assertEqual(nt_ub, nt_copy_ub)
def test_fill_(self):
ntensors = 4
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
nt.fill_(10.)
for nt_ub in nt.unbind():
t = torch.empty_like(nt_ub)
t.fill_(10.)
self.assertEqual(nt_ub, t)
fill_tensor = torch.tensor([11.])
self.assertRaisesRegex(
RuntimeError,
"fill_ only supports 0-dimension value tensor",
lambda: nt.fill_(fill_tensor)
)
nt.fill_(fill_tensor[0])
for nt_ub in nt.unbind():
t = torch.empty_like(nt_ub)
t.fill_(11.)
self.assertEqual(nt_ub, t)
def test_ones_like(self):
ntensors = 4
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
ones_nt = torch.ones_like(nt)
for nt_ub in ones_nt.unbind():
t = torch.ones_like(nt_ub)
self.assertEqual(nt_ub, t)
class TestNestedTensorDeviceType(TestCase):
# Helper function to generate a pair of random nested tensors
# the 2 nested tensors have same shapes
def random_nt_pair(self, device, dtype, num_tensors, max_dims):
ts1 = []
ts2 = []
for _ in range(num_tensors):
tensor_dims = tuple([torch.randint(low=0, high=max_dim, size=(1,)).item() for max_dim in max_dims])
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
t2 = torch.randn(tensor_dims, device=device, dtype=dtype)
ts1.append(t1)
ts2.append(t2)
return (torch.nested.nested_tensor(ts1, device=device, dtype=dtype),
torch.nested.nested_tensor(ts2, device=device, dtype=dtype))
@dtypes(*floating_types_and_half())
def test_detach(self, device, dtype):
a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=False)
b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=False)
x = torch.nested.nested_tensor([a, b], requires_grad=True)
x_detach = x.detach()
z = x_detach * 4
self.assertFalse(x_detach.requires_grad)
self.assertFalse(z.requires_grad)
a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=True)
b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=True)
x = torch.nested.as_nested_tensor([a, b])
y = x * 2
y = y.detach()
self.assertFalse(y.requires_grad)
self.assertIsNone(y.grad_fn)
z = x + y
torch.nested.to_padded_tensor(z, 0).sum().backward()
# This is an incorrect gradient, but we assume that's what the user
# wanted. detach() is an advanced option.
self.assertEqual(a.grad, torch.ones(2, 4, device=device, dtype=dtype))
self.assertEqual(b.grad, torch.ones(5, 4, device=device, dtype=dtype))
@dtypes(torch.float, torch.float16, torch.double)
def test_unbind_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
ub_contiguous = nt_contiguous.unbind()
ub_noncontiguous = nt_noncontiguous.unbind()
self.assertEqual(len(ub_contiguous), len(ub_noncontiguous))
n = len(ub_contiguous)
for i in range(n):
self.assertEqual(ub_contiguous[i], ub_noncontiguous[i])
@dtypes(torch.float)
@skipMeta
def test_to_then_from_padded_tensor_no_transform0213(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
padded = torch.nested.to_padded_tensor(nt, 0)
nt_to = torch._nested_from_padded_and_nested_example(padded, nt)
for (t1, t2) in zip(nt.unbind(), nt_to.unbind()):
self.assertEqual(t1, t2)
self.assertEqual(nt.device, nt_to.device)
@dtypes(torch.float)
@dtypesIfCUDA(torch.float, torch.half)
@skipMeta
@torch.inference_mode()
def test_layer_norm(self, device, dtype):
def _test(size):
# Simple shapes test
t0 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
t1 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
ts = [t0, t1, t0, t1]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype)
nt_result = layer_norm(nt)
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size).squeeze(0))
self.assertEqual(nt_subresult, t_result)
# More complex nt test with different lengths for each tensor
t0 = torch.randn(4, size, device=device, dtype=dtype, requires_grad=False)
t1 = torch.randn(10, size, device=device, dtype=dtype, requires_grad=False)
t2 = torch.randn(7, size, device=device, dtype=dtype, requires_grad=False)
ts = [t0, t1, t2, t0, t2]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype)
nt_result = layer_norm(nt)
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size).squeeze(0))
self.assertEqual(nt_subresult, t_result)
if size <= 128:
# Test with multidimensional tensors after irregular dim
# (run only with smaller dimensions to ensure fast execution)
t0 = torch.randn(4, size, size, 4, device=device, dtype=dtype, requires_grad=False)
t1 = torch.randn(10, size, size, 4, device=device, dtype=dtype, requires_grad=False)
t2 = torch.randn(7, size, size, 4, device=device, dtype=dtype, requires_grad=False)
ts = [t0, t1, t2, t0, t2]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm((size, size, 4), device=device, dtype=dtype)
nt_result = layer_norm(nt)
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0))
self.assertEqual(nt_subresult, t_result)
# Test where the normalizing dimensions are not all
layer_norm = torch.nn.LayerNorm((size, 4), device=device, dtype=dtype)
nt_result = layer_norm(nt)
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0))
self.assertEqual(nt_subresult, t_result)
for size in (1024, 1023, 513, 512, 256, 128, 2, 4, 32):
_test(size)
@dtypes(torch.float)
@dtypesIfCUDA(torch.float, torch.half)
@skipMeta
@torch.inference_mode()
def test_layer_norm_breaking(self, device, dtype):
size = 128
t0 = torch.randn(4, size, size, 4, device=device, dtype=dtype, requires_grad=False)
t1 = torch.randn(10, size, size, 4, device=device, dtype=dtype, requires_grad=False)
t2 = torch.randn(7, size, size, 4, device=device, dtype=dtype, requires_grad=False)
ts = [t0, t1, t2, t0, t2]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm((4, size, size, 4), device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"normalized_shape extends into irregular dimensions for the nested tensor",
lambda: layer_norm(nt),
)
layer_norm = torch.nn.LayerNorm((size + 1, size, 4), device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"The shape at dimension 0",
lambda: layer_norm(nt),
)
@skipMeta
@torch.inference_mode()
def test_embedding(self, device):
inputs = [
torch.randint(100, (L,), device=device, dtype=torch.int64)
for L in torch.randint(5, 50, (8,))
]
x = torch.nested.nested_tensor(inputs, device=device, dtype=torch.int64)
emb = torch.nn.Embedding(100, 8, device=device)
y = emb(x)
ys = y.unbind()
for i, inp in enumerate(inputs):
self.assertEqual(emb(inp), ys[i])
@dtypes(torch.float, torch.float16)
def test_to_padded_tensor_simple(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
for padding_value in (0, 1):
padded = torch.nested.to_padded_tensor(nt, padding_value)
correct_output = t.clone()
if padding_value == 0:
correct_output[0][-1] = torch.zeros_like(correct_output[0][-1])
else:
correct_output[0][-1] = torch.ones_like(correct_output[0][-1])
self.assertEqual(padded, correct_output)
self.assertEqual(padded.device, torch.device(device))
self.assertEqual(padded.dtype, dtype)
@dtypes(torch.float, torch.float16)
def test_to_padded_tensor_output_size(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
output_size = (4, 6, 5)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
for padding_value in (0, 1):
padded = torch.nested.to_padded_tensor(nt, padding_value, output_size=output_size)
correct_output = torch.ones(output_size, device=device, dtype=dtype) * padding_value
correct_output[:4:, :4, :4] = t.clone()
if padding_value == 0:
correct_output[0][3] = torch.zeros_like(correct_output[0][3])
else:
correct_output[0][3] = torch.ones_like(correct_output[0][3])
self.assertEqual(padded, correct_output)
self.assertEqual(padded.device, torch.device(device))
self.assertEqual(padded.dtype, dtype)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim2(self, device, dtype):
ts = [
torch.randn(160, device=device, dtype=dtype),
torch.randn(1240, device=device, dtype=dtype),
torch.randn(2400, device=device, dtype=dtype),
]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0)].copy_(t)
correct_output = torch.stack(correct_output)
padded = torch.nested.to_padded_tensor(nt, pad)
self.assertEqual(padded, correct_output)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim3(self, device, dtype):
ts = [
torch.randn(16, 21, device=device, dtype=dtype),
torch.randn(24, 32, device=device, dtype=dtype),
torch.randn(40, 53, device=device, dtype=dtype),
]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0), :t.size(1)].copy_(t)
correct_output = torch.stack(correct_output)
padded = torch.nested.to_padded_tensor(nt, pad)
self.assertEqual(padded, correct_output)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim4(self, device, dtype):
ts = [
torch.randn(16, 21, 13, device=device, dtype=dtype),
torch.randn(24, 32, 14, device=device, dtype=dtype),
torch.randn(40, 53, 16, device=device, dtype=dtype),
]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0), :t.size(1), :t.size(2)].copy_(t)
correct_output = torch.stack(correct_output)
padded = torch.nested.to_padded_tensor(nt, pad)
self.assertEqual(padded, correct_output)
# TODO: test noncontiguous to_padded_tensor
# For now this tests the functionality of noncontiguous_to_padded_tensor
# and the error message of to_padded_tensor
# since to_padded_tensor does not support noncontiguous buffer yet
@dtypes(torch.float, torch.float16, torch.double)
@torch.inference_mode()
def test_to_padded_tensor_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
# test noncontiguous_to_padded_tensor functionality
self.assertEqual(
torch.nested.to_padded_tensor(nt_contiguous, 0.0),
noncontiguous_to_padded_tensor(nt_noncontiguous))
# test to_padded_tensor error message
self.assertRaisesRegex(
RuntimeError,
r"for now to_padded_tensor only supports contiguous nested tensor",
lambda: torch.nested.to_padded_tensor(nt_noncontiguous, 0.0)
)
@skipMeta
def test_device_checks(self, device):
nt = torch.nested.nested_tensor([], device=device)
is_cuda = 'cuda' in str(device)
self.assertEqual(nt.is_cuda, is_cuda)
@dtypes(torch.float, torch.float16, torch.double)
def test_nested_tensor_indexing(self, device, dtype):
# edge case: empty nested tensor
nt0 = torch.nested.nested_tensor([])
self.assertRaises(IndexError, lambda: nt0[0])
# normal case
x0 = torch.randn((2, 5), device=device, dtype=dtype)
x1 = torch.randn((3, 4), device=device, dtype=dtype)
nt = torch.nested.nested_tensor([x0, x1])
# single index: only support integer in the batch dimension
self.assertEqual(nt[0], x0)
self.assertEqual(nt[-1], x1)
self.assertRaises(IndexError, lambda: nt[2])
self.assertRaises(IndexError, lambda: nt[-3])
self.assertRaises(NotImplementedError, lambda: nt[:])
self.assertRaises(NotImplementedError, lambda: nt[...])
# tuple of indices: only support integer in the batch dimension
# + all possible indexing in the original tensor dimensions
self.assertEqual(nt[0, 0, 0], x0[0, 0])
self.assertEqual(nt[0, 1, :], x0[1, :])
self.assertEqual(nt[1, ...], x1)
self.assertRaises(IndexError, lambda: nt[1, 4, 2])
self.assertRaises(NotImplementedError, lambda: nt[:, 1, 1])
# test select on non-batch dimensions
self.assertEqual(nt.select(1, 0)[0], x0.select(0, 0))
self.assertEqual(nt.select(1, 0)[1], x1.select(0, 0))
self.assertRaises(IndexError, lambda: nt.select(1, 3))
self.assertEqual(nt.select(2, 0)[0], x0.select(1, 0))
self.assertEqual(nt.select(2, 0)[1], x1.select(1, 0))
self.assertRaises(IndexError, lambda: nt.select(2, 5))
# make sure indexing returns a view
nt[0].fill_(100.0)
answer = torch.tensor(100.0, device=device, dtype=dtype).expand((2, 5))
self.assertEqual(nt[0], answer)
nt[1, 1, :].fill_(200.0)
answer = torch.tensor(200.0, device=device, dtype=dtype).expand(4)
self.assertEqual(nt[1, 1, :], answer)
# Test that indexing works when requires_grad_(True)
# previously this was failing because the backward kernel for select.int uses .sizes()
nt = torch.nested.nested_tensor([x0, x1]).requires_grad_(True)
self.assertEqual(nt[0], x0)
self.assertEqual(nt[-1], x1)
grad_x0 = torch.randn((2, 5), device=device, dtype=dtype)
nt[0].backward(grad_x0)
expected_grad = torch.nested.nested_tensor([grad_x0, torch.zeros((3, 4), device=device, dtype=dtype)])
self.assertEqual(nt.grad, expected_grad)
@parametrize("func", [subtest(torch.nn.functional.relu, name='relu'),
subtest(torch.nn.functional.relu_, name='relu_'),
subtest(torch.nn.functional.gelu, name='gelu'),
subtest(torch._C._nn.gelu_, name='gelu_'),
subtest(torch.tanh, name='tanh'),
subtest(torch.tanh_, name='tanh_'),
subtest(torch.neg, name='neg')])
def test_activations(self, device, func):
nt, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device=device, dtype=torch.float32)
nested_result = func(nt)
self.assertTrue(nested_result.is_nested)
for t, t_res in zip(nt.unbind(), nested_result.unbind()):
self.assertEqual(func(t), t_res)
self.assertRaisesRegex(
RuntimeError,
"NestedTensor must be contiguous to get buffer.",
lambda: func(nt_noncontiguous))
@dtypes(*floating_types_and_half())
def test_nested_tensor_chunk(self, device, dtype):
# Transformer use case
a = torch.randn(3, 3 * 4, device=device, dtype=dtype)
b = torch.randn(2, 3 * 4, device=device, dtype=dtype)
c = torch.randn(1, 3 * 4, device=device, dtype=dtype)
a_chunks = a.chunk(3, dim=-1)
b_chunks = b.chunk(3, dim=-1)
c_chunks = c.chunk(3, dim=-1)
a_nt = [a_chunks[0], b_chunks[0], c_chunks[0]]
b_nt = [a_chunks[1], b_chunks[1], c_chunks[1]]
c_nt = [a_chunks[2], b_chunks[2], c_chunks[2]]
nt = torch.nested.nested_tensor([a, b, c])
chunked = nt.chunk(3, dim=-1)
self.assertEqual(chunked[0], torch.nested.nested_tensor(a_nt))
self.assertEqual(chunked[1], torch.nested.nested_tensor(b_nt))
self.assertEqual(chunked[2], torch.nested.nested_tensor(c_nt))
for chunk in chunked:
self.assertFalse(chunk.is_contiguous())
# Failure chunking on ragged dimensions
self.assertRaisesRegex(
RuntimeError, "Chunk for nested tensors is currently only supported for the last dimension.",
lambda: torch.chunk(nt, 5, dim=1))
self.assertRaisesRegex(
RuntimeError, "Chunk for nested tensors is currently only supported for the last dimension.",
lambda: torch.chunk(nt, 5, dim=0))
# Failure on non-contiguous nt
_, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
self.assertRaisesRegex(
RuntimeError, "chunk expects `self` to be contiguous.", lambda: torch.chunk(nt_noncontiguous, 5, dim=-1))
# Failure when calling non divisible n_chunks
self.assertRaisesRegex(
RuntimeError, "Chunk for nested tensors is only supported for "
"nested tensors with trailing dimension divisible by chunks.",
lambda: torch.chunk(nt, 5, dim=-1))
# Failure when calling backward on a chunk
a = torch.randn(3, 3 * 4, device=device, dtype=dtype, requires_grad=True)
b = torch.randn(2, 3 * 4, device=device, dtype=dtype, requires_grad=True)
nt_grad = torch.nested.as_nested_tensor([a, b])
chunked = torch.chunk(nt_grad, 2, dim=-1)
self.assertRaisesRegex(RuntimeError, "derivative for aten::chunk is not implemented",
lambda: chunked[0].backward(chunked[0].clone()))
@dtypes(torch.float, torch.float16, torch.double)
@torch.inference_mode()
def test_nested_tensor_indexing_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
self.assertEqual(nt_contiguous.size(0), nt_noncontiguous.size(0))
n = nt_contiguous.size(0)
for i in range(n):
self.assertEqual(nt_contiguous[i], nt_noncontiguous[i])
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_add(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
out = nt1 + nt2
self.assertEqual(ref, out)
@onlyCUDA
@dtypes(torch.float, torch.float16)
@torch.inference_mode()
@parametrize("embedding_dim", [8, 128, 256, 384])
def test_nested_tensor_dense_elementwise(self, device, dtype, embedding_dim):
batch_size = 32
seq_lens = torch.randint(low=0, high=10, size=(batch_size,))
ts = [torch.randn((seq_len, embedding_dim)) for seq_len in seq_lens]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
t = torch.randn((batch_size, 1, embedding_dim), device=device, dtype=dtype)
ref_add = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt.unbind(), t.unbind())])
ref_mul = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt.unbind(), t.unbind())])
self.assertEqual(nt.add(t), ref_add)
self.assertEqual(nt.mul(t), ref_mul)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_mul(self, device, dtype):
# nested tensor * nested tensor
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
out = nt1 * nt2
self.assertEqual(ref, out)
# nested tensor * scalar
number = 10.0
scalar = torch.tensor(number).to(dtype).to(device)
ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()])
out_number0 = nt1 * number
out_number1 = number * nt1
out_scalar0 = nt1 * scalar
out_scalar1 = scalar * nt1
self.assertEqual(out_number0, ref)
self.assertEqual(out_number1, ref)
self.assertEqual(out_scalar0, ref)
self.assertEqual(out_scalar1, ref)
# error case: numel == 1 but dim > 0
vector = torch.tensor([number]).to(dtype).to(device)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a nested self and non-nested other",
lambda: nt1.mul(vector)
)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a non-nested self and nested other",
lambda: vector.mul(nt1)
)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_div(self, device, dtype):
nt, nt2 = self.random_nt_pair(device, dtype, 4, (4, 4))
scale = 4.0
ref = torch.nested.nested_tensor([t / scale for t in nt.unbind()])
out = nt / 4.0
self.assertEqual(ref, out)
ref_transposed = ref.transpose(1, 2)
out = nt.transpose(1, 2) / 4.0
self.assertEqual(ref_transposed, out)
ref = torch.nested.nested_tensor([t / t2 for (t, t2) in zip(nt.unbind(), nt2.unbind())])
out = nt / nt2
self.assertEqual(ref, out)
out = nt.transpose(1, 2) / nt2.transpose(1, 2)
self.assertEqual(ref.transpose(1, 2), out)
nt_transpose_copy = torch.nested.nested_tensor([t.transpose(0, 1) for t in nt.unbind()])
self.assertRaisesRegex(
RuntimeError, "div requires strides to match when given NestedTensors",
lambda: nt_transpose_copy.transpose(1, 2) / nt2)
nt = torch.nested.nested_tensor([torch.randn(i, 4) for i in [3, 4, 5]], device=device, dtype=dtype)
nt_chunks = nt.chunk(2, -1)
self.assertRaisesRegex(
RuntimeError, "div requires offsets to match when given NestedTensors",
lambda: nt_chunks[0] / nt_chunks[1])
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_add_in_place(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))