forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nvfuser_frontend.py
366 lines (298 loc) · 14.1 KB
/
test_nvfuser_frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Owner(s): ["module: nvfuser"]
import unittest
from typing import List
import torch
from torch.testing._internal.common_utils import run_tests, TEST_WITH_ROCM, TestCase
from torch.testing._internal.jit_utils import RUN_CUDA
import torch._refs as refs
import torch._prims as prims
# Will only create the _nvfuser module if CUDA is available
if hasattr(torch._C, "_nvfuser"):
from torch._C._nvfuser import Fusion, FusionCache, FusionDefinition, DataType
RUN_NVFUSER = RUN_CUDA and not TEST_WITH_ROCM
def is_pre_volta():
if not RUN_NVFUSER:
return False
prop = torch.cuda.get_device_properties(torch.cuda.current_device())
return prop.major < 7
@unittest.skipIf(not RUN_NVFUSER, "requires CUDA")
@unittest.skipIf(is_pre_volta(), "Only supported on Volta and newer devices.")
class TestNvFuserFrontend(TestCase):
def test_basic(self) :
input1 = torch.ones(2, 4, 8, device='cuda')
input2 = torch.ones(2, 4, 8, device='cuda')
fc = FusionCache.get()
before_fusions = fc.num_fusions()
fs1 = Fusion()
with FusionDefinition(fs1) as fd :
t0 = fd.define_tensor(3)
t1 = fd.define_tensor(3)
c0 = fd.define_constant(3.0)
t2 = fd.ops.add(t0, t1)
t3 = fd.ops.mul(t2, c0)
t4 = fd.ops.sum(t3, [-1], False, DataType.Float)
fd.add_output(t4)
# Expected Output is a tensor of 48's
nvf_out1 = fs1.execute([input1, input2])[0]
# Create a new fusion with the same definition, it should hit the cache!
fs2 = Fusion()
with FusionDefinition(fs2) as fd :
t0 = fd.define_tensor(3)
t1 = fd.define_tensor(3)
c0 = fd.define_constant(3.0)
t2 = fd.ops.add(t0, t1)
t3 = fd.ops.mul(t2, c0)
t4 = fd.ops.sum(t3, [-1], False, DataType.Float)
fd.add_output(t4)
nvf_out2 = fs2.execute([input1, input2])[0]
# Check there is still only 1 cache entry
fc = FusionCache.get()
self.assertEqual(fc.num_fusions() - before_fusions, 1)
# Create a fusion from a fusion id and make sure it executes!
fs3 = Fusion(fs2.id())
nvf_out3 = fs3.execute([input1, input2])[0]
eager_out = torch.sum((input1 + input2) * 3.0, dim=-1)
self.assertEqual(eager_out, nvf_out1)
self.assertEqual(eager_out, nvf_out2)
self.assertEqual(eager_out, nvf_out3)
def test_basic_fp16(self) :
fs = Fusion()
with FusionDefinition(fs) as fd :
t0 = fd.define_tensor(3, DataType.Half)
t1 = fd.define_tensor(3, DataType.Half)
c0 = fd.define_constant(3.0)
t2 = fd.ops.add(t0, t1)
t3 = fd.ops.mul(t2, c0)
t4 = fd.ops.sum(t3, [-1], False, DataType.Float)
t5 = fd.ops.cast(t4, DataType.Half)
fd.add_output(t5)
input1 = torch.ones(2, 4, 8, device='cuda', dtype=torch.float16)
input2 = torch.ones(2, 4, 8, device='cuda', dtype=torch.float16)
# Expected Output is a tensor of 48's
nvf_out = fs.execute([input1, input2])[0]
eager_out = torch.sum((input1 + input2) * 3.0, dim=-1)
self.assertEqual(eager_out, nvf_out)
def test_cast_double_to_half(self) :
fs = Fusion()
with FusionDefinition(fs) as fd :
t0 = fd.define_tensor(2, DataType.Double)
t1 = fd.define_tensor(2, DataType.Double)
t0h = fd.ops.cast(t0, DataType.Half)
t1h = fd.ops.cast(t1, DataType.Half)
t2 = fd.ops.add(t0h, t1h)
t3 = fd.ops.relu(t2)
t4 = fd.ops.cast(t3, DataType.Half)
fd.add_output(t4)
input1 = torch.randn(2, 4, device='cuda', dtype=torch.float64)
input2 = torch.randn(2, 4, device='cuda', dtype=torch.float64)
nvf_out = fs.execute([input1, input2])[0]
eager_out = torch.relu(input1.to(torch.half) + input2.to(torch.half))
self.assertEqual(eager_out, nvf_out)
def test_promote_to_double(self) :
fs = Fusion()
with FusionDefinition(fs) as fd :
t0 = fd.define_tensor(2, DataType.Half)
t1 = fd.define_tensor(2, DataType.Double)
t2 = fd.ops.add(t0, t1)
t5 = fd.ops.relu(t2)
fd.add_output(t5)
input1 = torch.randn(2, 4, device='cuda', dtype=torch.float16)
input2 = torch.randn(2, 4, device='cuda', dtype=torch.float64)
nvf_out = fs.execute([input1, input2])[0]
eager_out = torch.relu(input1 + input2)
self.assertEqual(eager_out, nvf_out)
def test_implicit_broadcast_input(self) :
fs = Fusion()
with FusionDefinition(fs) as fd :
t0 = fd.define_tensor(1)
t1 = fd.define_tensor(3)
t0_b = fd.ops.broadcast_in_dim(t0, [2, 3, 4], [1])
t2 = fd.ops.add(t0_b, t1)
fd.add_output(t2)
input1 = torch.randn(3, device='cuda')
input2 = torch.randn(2, 3, 4, device='cuda')
nvf_out = fs.execute([input1, input2])[0]
eager_out = refs.add(prims.broadcast_in_dim(input1, [2, 3, 4], [1]), input2)
self.assertEqual(eager_out, nvf_out)
def test_explicit_broadcast_input(self) :
input1 = torch.randn(1, 1, 4, device='cuda')
input2 = torch.randn(2, 3, 4, device='cuda')
fs = Fusion()
with FusionDefinition(fs) as fd :
t0 = fd.define_tensor(sizes=input1.size(), strides=input1.stride())
t1 = fd.define_tensor(sizes=input2.size(), strides=input2.stride())
t0_b = fd.ops.broadcast_in_dim(t0, [2, 3, 4], [0, 1, 2])
t2 = fd.ops.add(t0_b, t1)
fd.add_output(t2)
nvf_out = fs.execute([input1, input2])[0]
eager_out = refs.add(prims.broadcast_in_dim(input1, [2, 3, 4], [0, 1, 2]), input2)
self.assertEqual(eager_out, nvf_out)
def test_broadcast_mixing(self) :
fs = Fusion()
with FusionDefinition(fs) as fd :
t0 = fd.define_tensor([3, 1], [1, 1])
t1 = fd.define_tensor(1)
t1_b = fd.ops.broadcast_in_dim(t1, [3, 3], [0])
t2 = fd.ops.add(t0, t1_b)
fd.add_output(t2)
input1 = torch.randn(3, 1, device='cuda')
input2 = torch.randn(3, device='cuda')
nvf_out = fs.execute([input1, input2])[0]
eager_out = refs.add(input1, prims.broadcast_in_dim(input2, [3, 3], [0]))
self.assertEqual(eager_out, nvf_out)
def test_ops_broadcast(self) :
fs = Fusion()
with FusionDefinition(fs) as fd :
t0 = fd.define_tensor(1)
t1 = fd.define_tensor(3)
t0_b = fd.ops.broadcast(t0, [True, False, True])
t2 = fd.ops.add(t0_b, t1)
fd.add_output(t2)
input1 = torch.randn(3, device='cuda')
input2 = torch.randn(2, 3, 4, device='cuda')
nvf_out = fs.execute([input1, input2])[0]
eager_out = refs.add(prims.broadcast_in_dim(input1, [2, 3, 4], [1]), input2)
self.assertEqual(eager_out, nvf_out)
def test_prim_layer_norm_fwd(self) :
def primitive_definition(
inputs: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
normalization_axis: int,
keepdim: bool,
) -> torch.Tensor:
mean = inputs.mean(normalization_axis, keepdim=keepdim)
diff = inputs - mean
diff_sq = diff * diff
var = diff_sq.mean(normalization_axis, keepdim=keepdim)
pre_shift_scale_norm_output = (inputs - mean) / torch.sqrt(var + 1e-12)
norm_output = weight * pre_shift_scale_norm_output + bias
return norm_output
def nvfuser_fusion(
fd: FusionDefinition,
normalization_axis: int,
norm_size: int,
input_shape: List[int],
eps: float,
keepDim: bool
) -> None :
inputs = fd.define_tensor(symbolic_sizes=[-1, -1, -1], contiguous=[True, True, True], dtype=DataType.Float)
weights = fd.define_tensor(symbolic_sizes=[-1], contiguous=[True], dtype=DataType.Float)
bias = fd.define_tensor(symbolic_sizes=[-1], contiguous=[True], dtype=DataType.Float)
sum0 = fd.ops.sum(inputs, axes=[normalization_axis], keepdim=keepDim)
norm_const = fd.define_constant(norm_size)
mean = fd.ops.div(sum0, norm_const)
diff = fd.ops.sub(inputs, mean)
diff_sq = fd.ops.mul(diff, diff)
sum1 = fd.ops.sum(diff_sq, axes=[normalization_axis], keepdim=keepDim)
var = fd.ops.div(sum1, norm_const)
eps_const = fd.define_constant(eps)
var_eps = fd.ops.add(var, eps_const)
invstd = fd.ops.rsqrt(var_eps)
pre_scale_bias = fd.ops.mul(diff, invstd)
weights_bcast = fd.ops.broadcast_in_dim(weights, output_shape=input_shape, broadcast_dims=[2])
scale = fd.ops.mul(pre_scale_bias, weights_bcast)
bias_bcast = fd.ops.broadcast_in_dim(bias, output_shape=input_shape, broadcast_dims=[2])
out = fd.ops.add(scale, bias_bcast)
fd.add_output(out)
fd.add_output(mean)
fd.add_output(invstd)
def nvfuser_fusion_var_mean(
fd: FusionDefinition,
normalization_axis: int,
norm_size: int,
input_shape: List[int],
eps: float,
keepDim: bool
) -> None :
inputs = fd.define_tensor(symbolic_sizes=[-1, -1, -1], contiguous=[True, True, True], dtype=DataType.Float)
weights = fd.define_tensor(symbolic_sizes=[-1], contiguous=[True], dtype=DataType.Float)
bias = fd.define_tensor(symbolic_sizes=[-1], contiguous=[True], dtype=DataType.Float)
var, mean = fd.ops.var_mean(inputs, axes=[normalization_axis], correction=0, keepdim=keepDim)
eps_const = fd.define_constant(eps)
var_eps = fd.ops.add(var, eps_const)
invstd = fd.ops.rsqrt(var_eps)
diff = fd.ops.sub(inputs, mean)
pre_scale_bias = fd.ops.mul(diff, invstd)
weights_bcast = fd.ops.broadcast_in_dim(weights, output_shape=input_shape, broadcast_dims=[2])
scale = fd.ops.mul(pre_scale_bias, weights_bcast)
bias_bcast = fd.ops.broadcast_in_dim(bias, output_shape=input_shape, broadcast_dims=[2])
out = fd.ops.add(scale, bias_bcast)
fd.add_output(out)
fd.add_output(mean)
fd.add_output(invstd)
input_size = [64, 128, 1024]
dtype = torch.float32
device = 'cuda'
inputs = torch.randn(*input_size, device=device, requires_grad=True)
weights = torch.nn.Parameter(torch.randn(input_size[2], dtype=dtype, device=device))
biases = torch.nn.Parameter(torch.randn(input_size[2], dtype=dtype, device=device))
fc = FusionCache.get()
before_fusions = fc.num_fusions()
for _ in range(5) :
nvf_fusion = Fusion()
with FusionDefinition(nvf_fusion) as fd:
nvfuser_fusion(fd, 2, inputs.size()[2], inputs.size(), 1e-12, True)
nvf_out = nvf_fusion.execute([inputs, weights, biases])
for _ in range(5) :
nvf_var_mean_fusion = Fusion()
with FusionDefinition(nvf_var_mean_fusion) as fd:
nvfuser_fusion_var_mean(fd, 2, inputs.size()[2], inputs.size(), 1e-12, True)
nvf_var_mean_out = nvf_var_mean_fusion.execute([inputs, weights, biases])
for _ in range(5) :
eager_out = primitive_definition(inputs, weights, biases, 2, True)
self.assertEqual(eager_out, nvf_out[0])
self.assertEqual(eager_out, nvf_var_mean_out[0])
fusion_cache = FusionCache.get()
self.assertEqual(fc.num_fusions() - before_fusions, 2)
def test_prim_rms_norm_fwd(self) :
def primitive_definition(
inputs: torch.Tensor,
weight: torch.Tensor,
normalization_axis: int,
keepdim: bool,
) -> torch.Tensor:
var = inputs.mul(inputs).mean(normalization_axis, keepdim)
pre_shift_scale_norm_output = inputs / torch.sqrt(var + 1e-12)
norm_output = weight * pre_shift_scale_norm_output
return norm_output
def nvfuser_fusion(
fd: FusionDefinition,
normalization_axis: int,
norm_size: int,
input_shape: List[int],
eps: float,
keepDim: bool
) -> None :
inputs = fd.define_tensor(symbolic_sizes=[-1, -1, -1], contiguous=[True, True, True], dtype=DataType.Float)
weights = fd.define_tensor(symbolic_sizes=[-1], contiguous=[True], dtype=DataType.Float)
inputs_sq = fd.ops.mul(inputs, inputs)
sum0 = fd.ops.sum(inputs_sq, axes=[normalization_axis], keepdim=keepDim)
norm_const = fd.define_constant(norm_size)
var = fd.ops.div(sum0, norm_const)
eps_const = fd.define_constant(eps)
var_eps = fd.ops.add(var, eps_const)
invstd = fd.ops.rsqrt(var_eps)
pre_scale = fd.ops.mul(inputs, invstd)
weights_bcast = fd.ops.broadcast_in_dim(weights, output_shape=input_shape, broadcast_dims=[2])
out = fd.ops.mul(pre_scale, weights_bcast)
fd.add_output(out)
fd.add_output(invstd)
input_size = [64, 128, 1024]
dtype = torch.float32
device = 'cuda'
inputs = torch.randn(*input_size, device=device, requires_grad=True)
weights = torch.nn.Parameter(torch.randn(input_size[2], dtype=dtype, device=device))
fc = FusionCache.get()
before_fusions = fc.num_fusions()
for _ in range(5) :
nvf_fusion = Fusion()
with FusionDefinition(nvf_fusion) as fd:
nvfuser_fusion(fd, 2, inputs.size()[2], inputs.size(), 1e-12, True)
nvf_out = nvf_fusion.execute([inputs, weights])
for _ in range(5) :
eager_out = primitive_definition(inputs, weights, 2, True)
self.assertEqual(eager_out, nvf_out[0])
self.assertEqual(fc.num_fusions() - before_fusions, 1)
if __name__ == '__main__':
run_tests()