forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_schema_check.py
450 lines (398 loc) · 19.1 KB
/
test_schema_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Owner(s): ["oncall: jit"]
import os
import sys
import torch
from torch.utils._pytree import tree_map
from torch.testing._internal.common_utils import run_tests
from torch.fx.operator_schemas import normalize_function
from torch.testing._internal.schema_check_mode import SchemaCheckMode
from torch.utils._python_dispatch import TorchDispatchMode
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing._internal.common_device_type import ops, OpDTypes, instantiate_device_type_tests
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
# This TorchDispatchTensor Subclass is used to simulate an incorrect schema
# which is then used to test that SchemaCheckMode behaves as expected
class IncorrectAliasTensor(torch.Tensor):
ALIAS_ARG_OUT = {"aten::add"}
ALIAS_OUT_OUT = {"aten::aminmax"}
MUTATE_ARGS_OUT = {"aten::sub"}
elem: torch.Tensor
__slots__ = ['elem']
__torch_function__ = torch._C._disabled_torch_function_impl
@staticmethod
def __new__(cls, elem, *args, **kwargs):
# The wrapping tensor (IncorrectAliasTensor) shouldn't hold any
# memory for the class in question, but it should still
# advertise the same device as before
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls, elem.size(),
strides=elem.stride(), storage_offset=elem.storage_offset(),
# TODO: clone storage aliasing
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=kwargs.get("requires_grad", False)
)
# ...the real tensor is held as an element on the tensor.
r.elem = elem.detach() if r.requires_grad else elem
return r
def __repr__(self):
return super().__repr__(tensor_contents=f"{self.elem}")
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, cls) else e
def wrap(e):
return cls(e) if isinstance(e, torch.Tensor) else e
unwrapped_args = tree_map(unwrap, args)
out = func(*unwrapped_args, **tree_map(unwrap, kwargs))
if func._schema.name in IncorrectAliasTensor.ALIAS_ARG_OUT:
args[0].elem = out
if func._schema.name in IncorrectAliasTensor.MUTATE_ARGS_OUT:
args[0].elem = torch.rand(args[0].elem.shape)
if func._schema.name in IncorrectAliasTensor.ALIAS_OUT_OUT:
incorrect_out = list(out)
incorrect_out[0] = incorrect_out[1]
return tree_map(wrap, tuple(incorrect_out))
return tree_map(wrap, out)
# Tests various schema checking functionalities.
class TestSchemaCheck(JitTestCase):
# Tests that SchemaCheckMode records operator order with grad
def test_schema_check_mode_operator_order(self):
with SchemaCheckMode() as schema_check:
x = torch.rand((3, 3), requires_grad=True)
x.relu().sin()
self.assertEqual(["aten::rand", "aten::relu", "aten::detach", "aten::sin"], schema_check.ops)
# Tests that SchemaCheckMode records operator order without grad
def test_schema_check_mode_operator_order_without_grad(self):
with SchemaCheckMode() as schema_check:
x = torch.rand((3, 3), requires_grad=False)
x.relu().sin()
self.assertEqual(["aten::rand", "aten::relu", "aten::sin"], schema_check.ops)
# Tests that SchemaCheckMode records mutations and aliases with none expected
def test_schema_check_mode_mutated_aliasing_none(self):
# NB: previously requires_grad=True, but this induces a detach for
# saved variable
x = torch.rand((3, 3))
with SchemaCheckMode() as schema_check:
actual = x.relu().sin()
self.assertEqual([], schema_check.mutated)
self.assertEqual([], schema_check.aliasing)
# Tests that SchemaCheckMode records mutations and aliases with mutation expected
def test_schema_check_mode_mutated_aliasing_mutation(self):
actual = torch.rand((3, 3), requires_grad=False)
with SchemaCheckMode() as schema_check:
actual.sinh_()
self.assertEqual([('aten::sinh_', 'input')], schema_check.mutated)
self.assertEqual([('aten::sinh_', 'input', 'output_0')], schema_check.aliasing)
# Tests that SchemaCheckMode records mutations and aliases with resize_
def test_schema_check_mode_mutated_aliasing_resize_(self):
actual = torch.rand((3, 3), requires_grad=False)
with SchemaCheckMode() as schema_check:
actual.resize_(9)
self.assertEqual([('aten::resize_', 'input')], schema_check.mutated)
self.assertEqual([('aten::resize_', 'input', 'output_0')], schema_check.aliasing)
# Tests that SchemaCheckMode records mutations and aliases with aliasing inputs
def test_schema_check_mode_mutated_aliasing_aliasing_inputs(self):
actual = torch.rand((3, 3))
y = actual
with SchemaCheckMode() as schema_check:
actual.add_(y)
self.assertEqual(
[
('aten::add_', 'input'),
('aten::add_', 'other')
],
schema_check.mutated
)
self.assertEqual(
[
('aten::add_', 'input', 'output_0'),
('aten::add_', 'other', 'output_0')
],
schema_check.aliasing
)
# Tests that SchemaCheckMode records mutations and alias with as_strided
def test_schema_check_mode_mutated_aliasing_as_strided(self):
x = torch.rand((3, 6, 4))
with SchemaCheckMode() as schema_check:
x.as_strided_([3, 6, 4], [9, 1, 1])
self.assertEqual(
[
('aten::as_strided_', 'input')
],
schema_check.mutated
)
self.assertEqual(
[
('aten::as_strided_', 'input', 'output_0')
],
schema_check.aliasing
)
# Tests that SchemaCheckMode records mutations and aliases with multiple outputs
def test_schema_check_mode_mutated_aliasing_multiple_outputs(self):
x = torch.arange(9.)
m_actual = torch.arange(9.)
e_actual = torch.zeros([9], dtype=torch.int32)
with SchemaCheckMode() as schema_check:
torch.frexp(x, out=(m_actual, e_actual))
self.assertEqual(
[
('aten::frexp', 'mantissa'),
('aten::frexp', 'exponent')
],
schema_check.mutated
)
self.assertEqual(
[
('aten::frexp', 'mantissa', 'output_0'),
('aten::frexp', 'exponent', 'output_1')
],
schema_check.aliasing
)
# Tests that SchemaCheckMode records mutations and aliases with aliasing outputs
def test_schema_check_mode_mutated_aliasing_aliasing_outputs(self):
x = torch.rand((3, 3))
actual = torch.zeros(3)
with SchemaCheckMode() as schema_check:
torch.aminmax(x, dim=0, out=[actual, actual])
self.assertEqual(
[
('aten::aminmax', 'min'),
('aten::aminmax', 'max')
],
schema_check.mutated
)
self.assertEqual(
[
('aten::aminmax', 'min', 'output_0'),
('aten::aminmax', 'min', 'output_1'),
('aten::aminmax', 'max', 'output_0'),
('aten::aminmax', 'max', 'output_1')
],
schema_check.aliasing
)
# Tests that SchemaCheckMode wraps torch.Tensor
def test_schema_check_mode_functionality(self):
x = torch.rand((3, 3), requires_grad=True)
expected = x.relu().sin()
with SchemaCheckMode():
actual = x.relu().sin()
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor when an argument's default is overriden
def test_schema_check_mode_functionality_default_replaced(self):
x = torch.rand((3, 3), requires_grad=True)
expected = x.add(x, alpha=2)
with SchemaCheckMode():
actual = x.add(x, alpha=2)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor when there is a Tensor[] argument
def test_schema_check_mode_functionality_list_input(self):
a = torch.rand((3, 3))
b = torch.rand((3, 3))
c = torch.rand((3, 3))
expected = torch.linalg.multi_dot([a, b, c])
with SchemaCheckMode():
actual = torch.linalg.multi_dot([a, b, c])
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor with an op that has the (a -> *) notation
def test_schema_check_mode_functionality_wildcard_after(self):
x = torch.rand((3, 3))
expected = x.chunk(6)
with SchemaCheckMode():
actual = x.chunk(6)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor when there is a kwarg tensor input
def test_schema_check_mode_functionality_kwarg_tensor(self):
x = torch.rand((3, 5))
w = torch.rand((4))
expected = torch.stft(x, 4, win_length=4, window=w, return_complex=True)
with SchemaCheckMode():
actual = torch.stft(x, 4, win_length=4, window=w, return_complex=True)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps torch.Tensor with a mutable op
def test_schema_check_mode_functionality_mutable_inputs(self):
expected = torch.rand((3, 3), requires_grad=False)
actual = torch.clone(expected)
expected.sinh_()
with SchemaCheckMode():
actual.sinh_()
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps Torch.tensor when inputs alias
def test_schema_check_mode_functionality_aliasing_inputs(self):
expected = torch.rand((3, 3))
x = expected
actual = torch.clone(expected)
y = actual
expected.add_(x)
with SchemaCheckMode():
actual.add_(y)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps Torch.tensor with multiple tensor outputs
def test_schema_check_mode_functionality_with_multiple_outputs(self):
x = torch.arange(9.)
m_expected, e_expected = torch.frexp(x)
m_actual = torch.arange(9.)
e_actual = torch.zeros([9], dtype=torch.int32)
with SchemaCheckMode():
torch.frexp(x, out=(m_actual, e_actual))
self.assertEqual(m_expected, m_actual)
self.assertEqual(e_expected, e_actual)
# Tests that SchemaCheckMode wraps Torch.tensor with aliasing ouputs due to aliasing inputs
def test_schema_check_mode_functionality_with_multiple_outputs_aliasing(self):
x = torch.rand((3, 3))
actual = torch.zeros(3)
with SchemaCheckMode():
torch.aminmax(x, dim=0, out=[actual, actual])
self.assertEqual(torch.amax(x, dim=0), actual)
# Tests that SchemaCheckMode wraps Torch.tensor in ops with real Device input
def test_schema_check_mode_functionality_device_input(self):
with SchemaCheckMode():
x = torch.rand((3, 3), device="cpu", dtype=torch.double)
y = x + x
self.assertEqual(x + x, y)
# Tests that SchemaCheckMode wraps Torch.tensor in special training op edge case
def test_schema_check_mode_functionality_training_op(self):
x = torch.rand((3, 3), requires_grad=True)
batch = torch.nn.BatchNorm1d(3, track_running_stats=True)
expected = batch(x)
with SchemaCheckMode():
actual = batch(x)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps Torch.tensor with nested training op edge case
def test_schema_check_mode_functionality_nested_training_op(self):
actual = torch.rand((3, 3))
batch = torch.nn.BatchNorm1d(3, track_running_stats=True)
expected = torch.clone(actual)
expected.sinh_()
expected.tanh_()
expected.relu_()
expected = batch(expected)
with SchemaCheckMode():
actual.sinh_()
actual.tanh_()
actual.relu_()
actual = batch(actual)
self.assertEqual(expected, actual)
# Tests that SchemaCheckMode wraps Torch.tensor with empty list input
def test_schema_check_mode_empty_list_input(self):
expected = torch.atleast_1d([])
with SchemaCheckMode():
actual = torch.atleast_1d([])
self.assertEqual(expected, actual)
# Tests that an exception is raised for a mismatching mutation
def test_mutation_check_fail(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined as mutable but was mutated"):
x = torch.rand((3, 3))
y = torch.rand((3, 3))
with SchemaCheckMode():
IncorrectAliasTensor(x).sub(IncorrectAliasTensor(y))
# # Tests that an exception is raised for a mismatching mutation over multiple ops
def test_mutation_check_fail_multiple_operators(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined as mutable but was mutated"):
x = torch.rand((3, 3))
y = torch.rand((3, 3))
with SchemaCheckMode():
IncorrectAliasTensor(x).sin().cos().sub(IncorrectAliasTensor(y))
# Tests that an exception is raised for a mismatching alias
def test_alias_check_fail_simple(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
x = torch.rand((3, 3), requires_grad=True)
y = torch.rand((3, 3))
with SchemaCheckMode():
IncorrectAliasTensor(x).add(IncorrectAliasTensor(y), alpha=2)
# Tests that an exception is raised for a mismatching alias over multiple ops
def test_alias_check_fail_multiple_operators(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
x = torch.rand((3, 3), requires_grad=True)
y = torch.zeros((3, 3), requires_grad=True)
with SchemaCheckMode():
IncorrectAliasTensor(x).sin().relu().add(IncorrectAliasTensor(y), alpha=2)
# Tests that an exception is raised for a centered mismatching alias over multiple ops
def test_alias_check_fail_multiple_operators_centered(self):
with self.assertRaisesRegex(RuntimeError, "Argument input is not defined to alias output but was aliasing"):
x = torch.rand((3, 3), requires_grad=True)
y = torch.zeros((3, 3), requires_grad=True)
with SchemaCheckMode():
IncorrectAliasTensor(x).sin().add(IncorrectAliasTensor(y), alpha=2).relu()
# Tests that an exception is raised for a centered mismatching alias over multiple ops
def test_alias_check_fail_outputs_unexpectedly_aliasing(self):
with self.assertRaisesRegex(RuntimeError, "Outputs 0 and 1 alias unexpectedly"):
x = torch.rand((3, 3))
with SchemaCheckMode() as s:
IncorrectAliasTensor(x).aminmax(dim=0)
# Tests that is_alias_of returns as expected
def test_is_alias_of_basic(self):
x = torch.rand((3, 3), requires_grad=True)
y = torch.rand((3, 3), requires_grad=True)
y = x.add(x, alpha=2)
self.assertTrue(torch._C._is_alias_of(x, x))
self.assertFalse(torch._C._is_alias_of(x, y))
# Tests that is_alias_of returns as expected with empty containers
def test_is_alias_of_empty_container(self):
x = []
y = torch.rand((3, 3), requires_grad=True)
self.assertFalse(torch._C._is_alias_of(x, x))
self.assertFalse(torch._C._is_alias_of(x, y))
# Tests that overlaps returns as expected
def test_overlaps_basic(self):
x = torch.rand((3, 3), requires_grad=True)
y = torch.rand((3, 3), requires_grad=True)
z = [x, y]
self.assertTrue(torch._C._overlaps(x, x))
self.assertFalse(torch._C._overlaps(x, y))
self.assertTrue(torch._C._overlaps(z, x))
self.assertTrue(torch._C._overlaps(z, y))
# Tests that overlaps returns correctly with empty containers
def test_overlaps_empty_container(self):
x = []
y = [torch.rand((3, 3), requires_grad=True)]
# Empty containers return false
self.assertFalse(torch._C._overlaps(y, x))
self.assertTrue(torch._C._overlaps(y, y))
# Tests that SchemaInfo Bindings work as expected
def test_schema_info_bind_basic(self):
class SchemaInfoBindTestMode(TorchDispatchMode):
def __init__(self, test_self):
self.test_self = test_self
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
named_arg_list = normalize_function(
func,
args,
kwargs,
normalize_to_only_use_kwargs=True
).kwargs
schema_info_value_test = torch._C._SchemaInfo(func._schema)
schema_info_values_test = torch._C._SchemaInfo(func._schema)
self.test_self.assertFalse(schema_info_value_test.may_alias(
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
self.test_self.assertFalse(schema_info_values_test.may_alias(
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
for i in named_arg_list:
schema_info_value_test.add_argument_value(i, named_arg_list[i])
schema_info_values_test.add_argument_values(named_arg_list)
self.test_self.assertTrue(schema_info_value_test.may_alias(
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
self.test_self.assertTrue(schema_info_values_test.may_alias(
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 0),
torch._C._SchemaArgument(torch._C._SchemaArgType.input, 1)))
return func(*args, **kwargs)
x = torch.rand((3, 3))
with SchemaInfoBindTestMode(self) as schemaInfoCheck:
x.add(x)
class TestSchemaCheckModeOpInfo(JitTestCase):
@ops(op_db, dtypes=OpDTypes.supported)
def test_schema_correctness(self, device, dtype, op):
# Currently torch.equal isn't supported with torch.complex32
# There's also errors with complex64 and complex128
if (dtype == torch.complex32):
return
for sample in op.sample_inputs(device, dtype, requires_grad=False):
with SchemaCheckMode():
op(sample.input, *sample.args, **sample.kwargs)
instantiate_device_type_tests(TestSchemaCheckModeOpInfo, globals(), only_for=("cpu", "cuda"))
if __name__ == '__main__':
run_tests()