forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_static_runtime.py
604 lines (523 loc) · 21.3 KB
/
test_static_runtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Owner(s): ["module: unknown"]
import unittest
from typing import Dict, Optional
import numpy as np
import torch
from torch import nn
from torch.testing._internal.common_utils import TestCase, run_tests
from typing import List
class StaticModule:
def __init__(self, scripted):
# this is an nn.Module
if hasattr(scripted, "_c"):
self.static_module = torch._C._jit_to_static_module(scripted._c)
else:
self.static_module = torch._C._jit_to_static_module(scripted.graph)
def __call__(self, *args, **kwargs):
return self.static_module(*args, **kwargs)
def benchmark(self, args, kwargs, warmup_runs, main_runs):
self.static_module.benchmark(args, kwargs, warmup_runs, main_runs)
def runAsync(self, args, kwargs):
return self.static_module.runAsync(args, kwargs)
def benchmark_individual_ops(self, args, kwargs, warmup_runs, main_runs):
return self.static_module.benchmark_individual_ops(
args, kwargs, warmup_runs, main_runs
)
def linear_shim(
input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None
) -> torch.Tensor:
output = input.matmul(weight.t())
if bias is not None:
output += bias
ret = output
return ret
torch.nn.functional.linear = linear_shim
class MultiHeadAttentionLayer(nn.Module):
def __init__(self, hid_dim, n_heads, dropout, device):
super().__init__()
assert hid_dim % n_heads == 0
self.hid_dim = hid_dim
self.n_heads = n_heads
self.head_dim = hid_dim // n_heads
self.fc_q = nn.Linear(hid_dim, hid_dim)
self.fc_k = nn.Linear(hid_dim, hid_dim)
self.fc_v = nn.Linear(hid_dim, hid_dim)
self.fc_o = nn.Linear(hid_dim, hid_dim)
# self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
def forward(self, query, key, value, mask):
batch_size = query.shape[0]
Q = self.fc_q(query)
K = self.fc_k(key)
V = self.fc_v(value)
Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
# energy = energy.masked_fill(mask == 0, -1e10)
attention = torch.softmax(energy, dim=-1)
# x = torch.matmul(self.dropout(attention), V)
x = torch.matmul(attention, V)
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(batch_size, -1, self.hid_dim)
x = self.fc_o(x)
return x, attention
# Taken from https://github.com/facebookresearch/dlrm/blob/master/dlrm_s_pytorch.py
def create_mlp(ln, sigmoid_layer):
layers = nn.ModuleList()
for i in range(0, len(ln) - 1):
n = ln[i]
m = ln[i + 1]
LL = nn.Linear(int(n), int(m), bias=True)
mean = 0.0 # std_dev = np.sqrt(variance)
std_dev = np.sqrt(2 / (m + n)) # np.sqrt(1 / m) # np.sqrt(1 / n)
W = np.random.normal(mean, std_dev, size=(m, n)).astype(np.float32)
std_dev = np.sqrt(1 / m) # np.sqrt(2 / (m + 1))
bt = np.random.normal(mean, std_dev, size=m).astype(np.float32)
LL.weight.data = torch.tensor(W, requires_grad=True)
LL.bias.data = torch.tensor(bt, requires_grad=True)
layers.append(LL)
if i == sigmoid_layer:
layers.append(nn.Sigmoid())
else:
layers.append(nn.ReLU())
with torch.no_grad():
s = torch.jit.script(torch.nn.Sequential(*layers))
s.eval()
return s
def trivial_graph(a, b, c):
s = torch.tensor([[3, 3], [3, 3]])
return a + b * c + s
def elementwise_square_addition(input1, input2):
return input1 * input1 + input2 * input2
def fork_wait_graph1(input1, input2):
fut = torch.jit.fork(elementwise_square_addition, input1, input2)
return torch.jit.wait(fut)
def fork_wait_graph2(input1, input2):
fut = torch.jit.fork(loop_graph, input1, input2, 5)
return torch.jit.wait(fut)
"""
graph with multiple fork/wait operations
:param input: torch.tensor input to forked subgraph
:param iters: number of future/wait pairs to be created
"""
def fork_wait_graph3(input, iters: int):
futures : List[torch.jit.Future[torch.Tensor]] = []
for _ in range(iters):
futures.append(torch.jit.fork(torch.neg, input))
results = []
for future in futures:
results.append(torch.jit.wait(future))
return torch.sum(torch.stack(results))
"""
graph with multi-level fork/wait operations
:param input: torch.tensor input to forked subgraph
:param num_forks: number of top level forks
:param num_child_forks: number of child forks per parent fork
"""
def fork_wait_graph4(input, num_forks: int, num_child_forks: int):
futures : List[torch.jit.Future[torch.Tensor]] = []
for _ in range(num_forks):
futures.append(torch.jit.fork(fork_wait_graph3, input, num_child_forks))
results = []
for future in futures:
results.append(torch.jit.wait(future))
return torch.sum(torch.stack(results))
def add_tensor(input1, input2):
return input1 + input2
def fork_wait_graph_exception(input1, input2):
fut = torch.jit.fork(add_tensor, input1, input2)
return torch.jit.wait(fut)
def loop_graph(a, b, iters: int):
c = a + b * 2
for i in range(iters):
c = c + b
c *= 2
c -= a
return c
def output_graph(a, b, c, iters: int):
s = torch.tensor([[3, 3], [3, 3]])
k = a + b * c + s
d: Dict[int, torch.Tensor] = {}
for i in range(iters):
d[i] = k + i
return d
class SubModule(nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.a = 11
self.b = 2
def forward(self, x):
return self.a + self.b + x
class SubModule2(nn.Module):
def __init__(self):
super(SubModule2, self).__init__()
self.a = 12
self.b = 2
def forward(self, x):
self.b = 30
return self.a + self.b + x
class TestModule(nn.Module):
def __init__(self):
super(TestModule, self).__init__()
self.sub1 = SubModule()
self.sub2 = SubModule2()
self.a = 3
self.b = 4
def forward(self, x):
self.b = 20
return self.sub1(x) + self.a + self.b + self.sub2(x)
class TestStaticModule(TestCase):
"""
Test Case: To test simple fork/wait operation in a graph
fork is called on simple addition operation on input tensors
"""
def test_fork_wait_1(self):
inp1 = torch.ones(5, 5)
inp2 = torch.randn(5, 5)
torch_graph = torch.jit.script(fork_wait_graph1)
output_ref = torch_graph(inp1, inp2)
static_runtime_module = StaticModule(torch_graph)
output_test = static_runtime_module(inp1, inp2)
torch.testing.assert_close(output_test, output_ref)
"""
Test Case: To test simple fork/wait operation with
StaticRuntime runAsync API returning future
"""
def test_fork_wait_1_async(self):
inp1 = torch.ones(5, 5)
inp2 = torch.randn(5, 5)
torch_graph = torch.jit.script(fork_wait_graph1)
output_ref = torch_graph(inp1, inp2)
static_runtime_module = StaticModule(torch_graph)
output_test = static_runtime_module.runAsync((inp1, inp2), {})
output_test.wait()
torch.testing.assert_close(output_test.value(), output_ref)
"""
Test Case: To test fork/wait operation in a graph on
a loop subgraph performing mix of operations
"""
def test_fork_wait_2(self):
inp1 = torch.randn(5, 5)
inp2 = torch.randn(5, 5)
torch_graph = torch.jit.script(fork_wait_graph2)
output_ref = torch_graph(inp1, inp2)
static_runtime_module = StaticModule(torch_graph)
output_test = static_runtime_module(inp1, inp2)
torch.testing.assert_close(output_test, output_ref)
"""
Test Case: To test fork/wait operation on a loop
subgraph with StaticRuntime runAsync API returning future
"""
def test_fork_wait_2_async(self):
inp1 = torch.randn(5, 5)
inp2 = torch.randn(5, 5)
torch_graph = torch.jit.script(fork_wait_graph2)
output_ref = torch_graph(inp1, inp2)
static_runtime_module = StaticModule(torch_graph)
output_test = static_runtime_module.runAsync((inp1, inp2), {})
output_test.wait()
torch.testing.assert_close(output_test.value(), output_ref)
"""
Test Case: To test fork/wait operation in a graph on
having multiple fork/wait operations
"""
def test_fork_wait_3(self):
input = torch.ones(3, 3)
num_forks = 10
torch_graph = torch.jit.script(fork_wait_graph3)
output_ref = torch_graph(input, num_forks)
static_runtime_module = StaticModule(torch_graph)
output_test = static_runtime_module(input, num_forks)
torch.testing.assert_close(output_test, output_ref)
"""
Test Case: To test fork/wait operation in a graph with
multiple fork/wait operations on runAsync API returning future
"""
def test_fork_wait_3_async(self):
input = torch.ones(3, 3)
num_forks = 10
torch_graph = torch.jit.script(fork_wait_graph3)
output_ref = torch_graph(input, num_forks)
static_runtime_module = StaticModule(torch_graph)
output_test = static_runtime_module.runAsync((input, num_forks), {})
output_test.wait()
torch.testing.assert_close(output_test.value(), output_ref)
"""
Test Case: To test fork/wait operation in a graph on
multiple nested fork/wait operations
"""
def test_fork_wait_4(self):
input = torch.ones(3, 3)
num_forks = 10
num_child_forks = 10
torch_graph = torch.jit.script(fork_wait_graph4)
static_runtime_module = StaticModule(torch_graph)
output_ref = torch_graph(input, num_forks, num_child_forks)
output_test = static_runtime_module(input, num_forks, num_child_forks)
torch.testing.assert_close(output_test, output_ref)
"""
Test Case: To test fork/wait operation in a graph with multiple
nested fork/wait operations on runAsync API returning future
"""
def test_fork_wait_4_async(self):
input = torch.ones(3, 3)
num_forks = 10
num_child_forks = 10
torch_graph = torch.jit.script(fork_wait_graph4)
static_runtime_module = StaticModule(torch_graph)
output_ref = torch_graph(input, num_forks, num_child_forks)
output_test = static_runtime_module.runAsync(
(input, num_forks, num_child_forks), {})
output_test.wait()
torch.testing.assert_close(output_test.value(), output_ref)
"""
Test Case: To test exception handling in fork/wait
operation. Add.Tensor op is called for tensors with
non-matching dims on the forked subgraph and the
exception raised by subgraph is set on future returned
by prim::fork to parent graph. Returned exception is
checked for substring expected_error_msg as declared below
"""
def test_fork_wait_exception(self):
# incompatible tensors for add due to shape mismatch
input1 = torch.randn(4, 7)
input2 = torch.randn(4, 5)
torch_graph = torch.jit.script(fork_wait_graph_exception)
try:
static_runtime_module = StaticModule(torch_graph)
output_test = static_runtime_module(input1, input2)
except Exception as error:
expected_error_msg = (
"The size of tensor a (7) must match the size "
"of tensor b (5) at non-singleton dimension 1"
)
# test fails if error does not contain expected substr
if str(error).find(expected_error_msg) == -1:
raise RuntimeError(
"Tried execution of add.Tensors with incompatible shape. "
"Exception raised by forked runtime execution does "
f"not contain expected substring: \"{expected_error_msg}\""
) from error
"""
Test Case: To test exception handling in fork/wait
operation with runAsync API. Add.Tensor op is called for
tensors with non-matching dims on the forked subgraph
and the exception raised by subgraph is set on future returned
by prim::fork to parent graph. Returned exception is
checked for substring expected_error_msg as declared below
"""
def test_fork_wait_exception_async(self):
# incompatible tensors for add due to shape mismatch
input1 = torch.randn(4, 7)
input2 = torch.randn(4, 5)
torch_graph = torch.jit.script(fork_wait_graph_exception)
try:
static_runtime_module = StaticModule(torch_graph)
output_test = static_runtime_module.runAsync(
(input1, input2), {})
except Exception as error:
expected_error_msg = (
"The size of tensor a (7) must match the size "
"of tensor b (5) at non-singleton dimension 1"
)
# test fails if error does not contain expected substr
if str(error).find(expected_error_msg) == -1:
raise RuntimeError(
"Tried execution of add.Tensors with incompatible shape. "
"Exception raised by forked runtime execution does "
f"not contain expected substring: \"{expected_error_msg}\""
) from error
def test_multihead_attention_layer(self):
HID_DIM = 256
QUERY_LEN = 8
BATCH_SIZE = 128
LAYERS = 3
HEADS = 8
DROPOUT = 0.1
device = torch.device("cpu")
attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device)
with torch.no_grad():
src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device)
src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device)
attention.eval()
attention = torch.jit.script(attention)
attention.eval()
o_ref = attention(src, src, src, src_mask)
attention_a = StaticModule(attention)
o_test = attention_a(src, src, src, src_mask)
o_test_kw = attention_a(src, src, value=src, mask=src_mask)
for a, b in zip(o_ref, o_test):
torch.testing.assert_close(a, b)
for a, b in zip(o_ref, o_test_kw):
torch.testing.assert_close(a, b)
def test_multihead_attention_layer_benchmark(self):
HID_DIM = 256
QUERY_LEN = 8
BATCH_SIZE = 128
LAYERS = 3
HEADS = 8
DROPOUT = 0.1
device = torch.device("cpu")
attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device)
with torch.no_grad():
src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device)
src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device)
attention.eval()
attention = torch.jit.script(attention)
attention_a = StaticModule(attention)
attention_a.benchmark([src, src, src, src_mask], {}, 2, 2)
metrics = attention_a.benchmark_individual_ops(
[src, src, src, src_mask], {}, 2, 2
)
def test_mlp(self):
# Arguments taken from benchmark script, ./bench/dlrm_s_benchmark.sh
ln_bot = [512, 512, 64]
sigmoid_bot = -1
ln_top = [100, 1024, 1024, 1024, 1]
sigmoid_top = 3
bot_l = create_mlp(ln_bot, sigmoid_bot)
bot_l_acc = StaticModule(bot_l)
top_l = create_mlp(ln_top, sigmoid_top)
top_l_acc = StaticModule(top_l)
with torch.no_grad():
bot_inp = torch.randn(2048, 512) # torch.Size([2048, 512])
top_inp = torch.randn(2048, 100) # torch.Size([2048, 100])
ref_bot = bot_l(bot_inp)
acc_bot = bot_l_acc(bot_inp)
torch.testing.assert_close(acc_bot, ref_bot)
ref_top = top_l(top_inp)
acc_top = top_l_acc(top_inp)
torch.testing.assert_close(acc_top, ref_top)
for _ in range(5):
with torch.no_grad():
bot_inp = torch.randn(2048, 512) # torch.Size([2048, 512])
top_inp = torch.randn(2048, 100) # torch.Size([2048, 100])
ref_bot = bot_l(bot_inp)
acc_bot = bot_l_acc(bot_inp)
torch.testing.assert_close(acc_bot, ref_bot)
ref_top = top_l(top_inp)
acc_top = top_l_acc(top_inp)
torch.testing.assert_close(acc_top, ref_top)
def test_trivial_graph(self):
s = torch.full((2, 2), 2)
tg = torch.jit.script(trivial_graph)
o_ref = tg(s, s, s)
tg_a = StaticModule(tg)
o_test = tg_a(s, s, s)
torch.testing.assert_close(o_ref, o_test)
def test_leaky_relu(self):
s = torch.randn(5, 5)
tg = torch.jit.script(nn.LeakyReLU(0.1))
o_ref = tg(s)
tg_a = StaticModule(tg)
o_test = tg_a(s)
torch.testing.assert_close(o_ref, o_test)
def test_attr(self):
"""
TorchScript IR of TestModule() after freezing:
graph(%self : __torch__.test_static_runtime.___torch_mangle_0.TestModule,
%x.1 : Tensor):
%18 : int = prim::Constant[value=30]()
%30 : int = prim::Constant[value=13]()
%3 : int = prim::Constant[value=20]()
%2 : int = prim::Constant[value=1]()
%self.sub2.a : int = prim::Constant[value=12]()
%self.a : int = prim::Constant[value=3]()
= prim::SetAttr[name="b"](%self, %3)
%17 : Tensor = aten::add(%x.1, %30, %2)
%7 : Tensor = aten::add(%17, %self.a, %2)
%b.1 : int = prim::GetAttr[name="b"](%self)
%9 : Tensor = aten::add(%7, %b.1, %2)
%sub2 : __torch__.test_static_runtime.___torch_mangle_2.SubModule2 = prim::GetAttr[name="sub2"](%self)
= prim::SetAttr[name="b"](%sub2, %18)
%b : int = prim::GetAttr[name="b"](%sub2)
%22 : int = aten::add(%self.sub2.a, %b)
%23 : Tensor = aten::add(%x.1, %22, %2)
%12 : Tensor = aten::add(%9, %23, %2)
return (%12)
"""
# test prim::SetAttr and prim::GetAttr impl in Static Runtime
m = TestModule()
m.eval()
input = torch.randn(2, 2)
output_s = m.forward(input)
ms = torch.jit.script(m)
sm = StaticModule(ms)
output_sm = sm(input)
torch.testing.assert_close(output_s, output_sm)
sm.benchmark([input], {}, 2, 2)
sm.benchmark_individual_ops([input], {}, 2, 2)
sm.benchmark([], {"x": input}, 2, 2)
sm.benchmark_individual_ops([], {"x": input}, 2, 2)
@unittest.skip("Temporarily disabled")
def test_fusion_trivial_graph(self):
s = torch.full((2, 2), 2)
tg = torch.jit.script(trivial_graph)
o_ref = tg(s, s, s)
torch._C._fuse_to_static_module(tg.graph)
assert "StaticSubgraph" in str(tg.graph)
o_test = tg(s, s, s)
torch.testing.assert_close(o_ref, o_test)
@unittest.skip("Temporarily disabled")
def test_fusion_multihead_attention_layer(self):
HID_DIM = 256
QUERY_LEN = 8
BATCH_SIZE = 128
LAYERS = 3
HEADS = 8
DROPOUT = 0.1
device = torch.device("cpu")
attention = MultiHeadAttentionLayer(HID_DIM, HEADS, DROPOUT, device).to(device)
with torch.no_grad():
src = torch.randn(BATCH_SIZE, QUERY_LEN, HID_DIM).to(device)
src_mask = (src > 0)[:, :, 0].unsqueeze(1).unsqueeze(2).to(device)
attention.eval()
attention = torch.jit.script(attention)
attention.eval()
o_ref = attention(src, src, src, src_mask)
torch._C._fuse_to_static_module(attention._c)
o_test = attention(src, src, src, src_mask)
for a, b in zip(o_ref, o_test):
torch.testing.assert_close(a, b)
@unittest.skip("Temporarily disabled")
def test_fusion_loop(self):
a = torch.randn(5, 5)
b = torch.randn(5, 5)
c = 4
lg = torch.jit.script(loop_graph)
o_ref = lg(a, b, c)
torch._C._fuse_to_static_module(lg.graph)
assert "StaticSubgraph" in str(lg.graph)
o_test = lg(a, b, c)
torch.testing.assert_close(o_ref, o_test)
@unittest.skip("Temporarily disabled")
def test_fusion_outputs(self):
a = torch.randn(2, 2)
b = torch.randn(2, 2)
c = 4
og = torch.jit.script(output_graph)
o_ref = og(a, b, b, c)
torch._C._fuse_to_static_module(og.graph)
assert "StaticSubgraph" in str(og.graph)
o_test = og(a, b, b, c)
for i in o_ref.keys():
torch.testing.assert_close(o_ref[i], o_test[i])
def test_create_object(self):
class Foo: # noqa: B903
def __init__(self, x: torch.Tensor) -> None:
self.x = x
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, y: torch.Tensor) -> torch.Tensor:
foo = Foo(y)
return y * foo.x
mod = torch.jit.script(Mod()).eval()
y = torch.randn((1, ))
expected = mod(y)
static_mod = StaticModule(torch.jit.freeze(mod))
actual = static_mod(y)
self.assertEqual(expected, actual)
if __name__ == "__main__":
run_tests()