forked from steveseguin/social_stream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentiment.js
84 lines (78 loc) · 2.55 KB
/
sentiment.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/**
* https://github.com/tensorflow/tfjs-examples/tree/master/sentiment
*
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
var model;
var metadataJson;
var indexFrom;
var maxLen;
var wordIndex;
var vocabularySize;
async function loadSentimentAnalysis(){
if (sentimentAnalysisLoaded!==false){return;}
sentimentAnalysisLoaded = null;
model = await tf.loadLayersModel('./thirdparty/model.json');
metadataJson = await fetch('./thirdparty/metadata.json');
var sentimentMetadata = await metadataJson.json();
indexFrom = sentimentMetadata['index_from'];
maxLen = sentimentMetadata['max_len'];
wordIndex = sentimentMetadata['word_index'];
vocabularySize = sentimentMetadata['vocabulary_size'];
console.log("model loaded");
sentimentAnalysisLoaded = true;
}
function padSequences(
sequences, padding = 'pre', truncating = 'pre', value = 0) {
return sequences.map(seq => {
if (seq.length > maxLen) {
if (truncating === 'pre') {
seq.splice(0, seq.length - maxLen);
} else {
seq.splice(maxLen, seq.length - maxLen);
}
}
if (seq.length < maxLen) {
const pad = [];
for (let i = 0; i < maxLen - seq.length; ++i) {
pad.push(value);
}
if (padding === 'pre') {
seq = pad.concat(seq);
} else {
seq = seq.concat(pad);
}
}
return seq;
}
);
}
function inferSentiment(input_text) {
if (!sentimentAnalysisLoaded){return;}
const inputText = input_text.trim().toLowerCase().replace(/(\.|\,|\!)/g, '').split(' ');
const sequence = inputText.map(word => {
var wdIndex = wordIndex[word] + indexFrom;
if (wdIndex > vocabularySize) {
wdIndex = 2;
}
return wdIndex;
});
const paddedSequence = padSequences([sequence]);
const input = tf.tensor2d(paddedSequence, [1, maxLen]);
const predictOut = model.predict(input);
const score = predictOut.dataSync()[0];
predictOut.dispose();
return score;
}