Open
Description
Hi! I encounter an issue that when doing the Step3(SFT).
The function "get_accelerate_model" in qlora_model.py sets the adapter_name="lora_default". This results in an error that the trainable parameters are set to 0.0 rather than 1.6% of the full parameters:
def get_accelerate_model(
args: Namespace,
checkpoint_dir: Optional[str] = None,
adapter_name="lora_default",
is_trainable=True,
reuse_base_model=False,
):
I fix this by setting the adapter_name="default". I am finetuning a llama-2-7b-hf model and I wonder if it is a bug or an issue caused by the different finetuned model(7b and 70b)
Metadata
Metadata
Assignees
Labels
No labels
Activity