-
Notifications
You must be signed in to change notification settings - Fork 165
/
Copy pathlocal_python.py
54 lines (46 loc) · 1.97 KB
/
local_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# (C) Copyright IBM Corp. 2024.
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import ast
import os
import sys
from data_processing.runtime.pure_python import PythonTransformLauncher
from data_processing.utils import ParamsUtils
from dpk_hap.transform_python import HAPPythonTransformConfiguration
# create parameters
input_folder = os.path.abspath(os.path.join(os.path.dirname(__file__), "../test-data/input"))
output_folder = os.path.abspath(os.path.join(os.path.dirname(__file__), "../output"))
local_conf = {
"input_folder": input_folder,
"output_folder": output_folder,
}
code_location = {"github": "github", "commit_hash": "12345", "path": "path"}
params = {
"data_local_config": ParamsUtils.convert_to_ast(local_conf),
"runtime_pipeline_id": "pipeline_id",
"runtime_job_id": "job_id",
"runtime_code_location": ParamsUtils.convert_to_ast(code_location),
}
hap_params = {
"model_name_or_path": "ibm-granite/granite-guardian-hap-38m",
"annotation_column": "hap_score",
"doc_text_column": "contents",
"inference_engine": "CPU",
"max_length": 512,
"batch_size": 128,
}
if __name__ == "__main__":
# Set the simulated command line args
sys.argv = ParamsUtils.dict_to_req(d=params | hap_params)
# create launcher
launcher = PythonTransformLauncher(runtime_config=HAPPythonTransformConfiguration())
# Launch the ray actor(s) to process the input
launcher.launch()