Skip to content

The model 'FastFit' is not supported for text-classification #20

@daboe01

Description

@daboe01

model = FastFit.from_pretrained("fast-fit")
model

gives

FastFit(
  (encoder): MPNetModel(
    (embeddings): MPNetEmbeddings(
      (word_embeddings): Embedding(30527, 768, padding_idx=1)
      (position_embeddings): Embedding(514, 768, padding_idx=1)
      (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
    (encoder): MPNetEncoder(
      (layer): ModuleList(
        (0-11): 12 x MPNetLayer(
          (attention): MPNetAttention(
            (attn): MPNetSelfAttention(
              (q): Linear(in_features=768, out_features=768, bias=True)
              (k): Linear(in_features=768, out_features=768, bias=True)
              (v): Linear(in_features=768, out_features=768, bias=True)
              (o): Linear(in_features=768, out_features=768, bias=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (intermediate): MPNetIntermediate(
            (dense): Linear(in_features=768, out_features=3072, bias=True)
            (intermediate_act_fn): GELUActivation()
          )
          (output): MPNetOutput(
            (dense): Linear(in_features=3072, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
      (relative_attention_bias): Embedding(32, 12)
    )
    (pooler): MPNetPooler(
      (dense): Linear(in_features=768, out_features=768, bias=True)
      (activation): Tanh()
    )
  )
  (projection): Linear(in_features=768, out_features=128, bias=False)
  (clf): Linear(in_features=768, out_features=17999, bias=True)
  (dropout): Dropout(p=0.1, inplace=False)
  (batch_norm): BatchNorm1d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (clf_criterion): CrossEntropyLoss()
  (sim_criterion): SupConLoss()
  (all_docs): ParameterList(
      (0): Parameter containing: [torch.int64 of size 17999x10]
      (1): Parameter containing: [torch.int64 of size 17999x10]
  )
)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions