-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfmwork.py
139 lines (106 loc) · 3.32 KB
/
fmwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# --------------
# base utilities
# --------------
def banner(*s):
print(); print(80*'-');
print(' '.join(list(map(str,s))));
print(80*'-'); print()
# ----------------
# timing utilities
# ----------------
import time
def time_get(): return time.time_ns()
def time_diff(t1, t0): return float(t1 - t0) / 1E9
def time_fmt(t): t = str(t).zfill(9); return '%s.%s' % (t[:-9], t[-9:])
# ---------------
# stats utilities
# ---------------
import numpy as np
def avg(x): return np.mean(x)
def std(x): return np.std(x)
def med(x): return np.median(x)
def mad(x): return med(np.absolute(x - med(x)))
# -------------------------
# generate synthetic inputs
# -------------------------
def input_generator(model, input_size, batch_size, return_tensors):
import random
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained(model)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
vocab = list(range(0, tokenizer.vocab_size))
for i in tokenizer.all_special_ids:
if i in vocab:
vocab.remove(i)
tokens = [ [] for _ in range(batch_size) ]
for b in range(batch_size):
for i in range(input_size):
tokens[b].append(random.choice(vocab))
if return_tensors == 'np': return tokens
import torch
from transformers.tokenization_utils_base import BatchEncoding
input_batch = BatchEncoding({
'input_ids' : torch.tensor(tokens),
'attention_mask' : torch.ones(batch_size, input_size),
})
return input_batch
# ------------
# benchmarking
# ------------
import datetime
class var: pass
var.t0s = None
var.t1s = None
var.dts = None
def reset():
var.t0s = []
var.t1s = []
var.dts = []
def t0(): var.t0s.append(time_get())
def t1(
rep, reps,
input_size, output_size, batch_size,
tensor_parallel):
var.t1s.append(time_get())
dt = time_diff(var.t1s[-1], var.t0s[-1])
var.dts.append(dt)
print(
'FMWORK REP',
'%3d / %3d :' % (rep + 1, reps),
'%s %s' % (time_fmt(var.t0s[-1]), time_fmt(var.t1s[-1])),
'%.3f' % (dt), # rep time (s)
'%.1f' % (1000.0 * dt / output_size), # inter-token latency (ms)
'%.1f' % (batch_size * output_size / dt), # throughput (tok/s)
)
if rep + 1 == reps:
show(input_size, output_size, batch_size, tensor_parallel)
def show(
input_size, output_size, batch_size,
tensor_parallel):
_ign = 0.2
_ign = int(max(_ign * len(var.dts), 1))
_rem = var.dts[_ign:]
_med = med(_rem)
_itl = 1000.0 * _med / output_size
_thp = batch_size * output_size / _med
print()
print(
'FMWORK RES',
datetime.datetime.now().strftime('%Y%m%d-%H%M%S.%f'),
input_size,
output_size,
batch_size,
tensor_parallel,
'%.3f' % (_med),
'%.1f' % (_itl),
'%.1f' % (_thp),
)
print()
print('Input size = %d' % (input_size))
print('Output size = %d' % (output_size))
print('Batch size = %d' % (batch_size))
print('Tensor parallelism = %d' % (tensor_parallel))
print('Median iteration time (s) = %.3f' % (_med))
print('Inter-token latency (ms) = %.1f' % (_itl))
print('Throughput (tok/s) = %.1f' % (_thp))