Skip to content

TypeError: relu(): argument 'input' (position 1) must be Tensor, not float #20

@xiaoyu20010808

Description

@xiaoyu20010808

Hi, thanks for the great work,I had some problems replicating the paper, when i run eval_dtu.sh, main.py has an error . on line 183, trainer.validate(volrecon, dataloader_test1).
[rank0]: Traceback (most recent call last):
[rank0]: File "/data/tx/volrecon/VolRecon-main/main.py", line 183, in
[rank0]: trainer.validate(volrecon, dataloader_test1)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 697, in validate
[rank0]: return call._call_and_handle_interrupt(
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 36, in _call_and_handle_interrupt
[rank0]: return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/subprocess_script.py", line 88, in launch
[rank0]: return function(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 745, in _validate_impl
[rank0]: results = self._run(model, ckpt_path=self.ckpt_path)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1112, in _run
[rank0]: results = self._run_stage()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1188, in _run_stage
[rank0]: return self._run_evaluate()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1228, in _run_evaluate
[rank0]: eval_loop_results = self._evaluation_loop.run()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
[rank0]: self.advance(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 152, in advance
[rank0]: dl_outputs = self.epoch_loop.run(self._data_fetcher, dl_max_batches, kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
[rank0]: self.advance(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 137, in advance
[rank0]: output = self._evaluation_step(**kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 234, in _evaluation_step
[rank0]: output = self.trainer._call_strategy_hook(hook_name, *kwargs.values())
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1494, in _call_strategy_hook
[rank0]: output = fn(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/strategies/ddp.py", line 363, in validation_step
[rank0]: return self.model.validation_step(*args, **kwargs)
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 265, in validation_step
[rank0]: self.extract_geometry(batch, batch_idx)
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 375, in extract_geometry
[rank0]: srdf, points_x, depth, rgb = self.infer(batch=batch, ray_idx=ray_idx, source_imgs_feat=source_imgs_feat,
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 143, in infer
[rank0]: rgb, depth, srdf, opacity, weight, points_in_pixel, _ = self.sample2rgb(batch, points_x, z_val, ray_d, ray_idx,
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 85, in sample2rgb
[rank0]: rgb, depth, opacity, weight, variance = self.renderer.render(rearrange(z_val, "B RN SN -> (B RN) SN"),
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/utils/renderer.py", line 32, in render
[rank0]: iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - cos_anneal_ratio) + F.relu(-true_cos) * cos_anneal_ratio)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/torch/nn/functional.py", line 1500, in relu
[rank0]: result = torch.relu(input)
[rank0]: TypeError: relu(): argument 'input' (position 1) must be Tensor, not float
I can't solve the problem right now, and I'd appreciate your help

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions