|
| 1 | +import networkx as nx |
| 2 | +import numpy as np |
| 3 | +import random |
| 4 | +import copy |
| 5 | + |
| 6 | +### Creation of a tree-like network ### |
| 7 | +# This is an adaption of code created by Alexandra Vallet (University of Oslo) |
| 8 | +# See https://gitlab.com/ValletAlexandra/NetworkGen for the original |
| 9 | + |
| 10 | +""" |
| 11 | +Murray's law |
| 12 | +We consider that the sum of power 3 of daughter vessels radii equal to the power three of the parent vessel radius |
| 13 | +D0^3=D1^3 + D2^3 |
| 14 | +We consider that the ratio between two daughter vessels radii is gam |
| 15 | +D2/D1=gam |
| 16 | +Then we have |
| 17 | +D2=D0(gam^3+1)^(-1/3) |
| 18 | +D1=gam D2 |
| 19 | +
|
| 20 | +We consider that the length L of a vessel segment in a given network is related to its diameter d via L = λd, |
| 21 | +here the positive constant λ is network-specific |
| 22 | +
|
| 23 | +The angle of bifurcation can be expressed based on blood volume conservation and minimum energy hypothesis |
| 24 | +FUNG, Y. (1997). Biomechanics: Circulation. 2nd edition. Heidelberg: Springer. |
| 25 | +HUMPHREY, J. and DELANGE, S. (2004). An Introduction to Biomechanics. Heidelberg: Springer. |
| 26 | +VOGEL, S. (1992). Vital Circuits. Oxford: Oxford University Press. |
| 27 | +See here for derivation : https://www.montogue.com/blog/murrays-law-and-arterial-bifurcations/ |
| 28 | +Then it depends on the diameters |
| 29 | +""" |
| 30 | + |
| 31 | + |
| 32 | +def make_arterial_tree( |
| 33 | + N, radius0=1, gam=0.8, lmbda=8, signs=False, uniform_lengths=False |
| 34 | +): |
| 35 | + """ |
| 36 | + N (int): number of levels in the arterial tree |
| 37 | + radius0 (float): radius of first vessel |
| 38 | + gam (float): ratio between daughter vessel radii |
| 39 | + signs (list): vector of choices (+-1) of vessel direction. If no vector is given this is assigned randomly. |
| 40 | + uniform_lengths (bool): uniform branch length |
| 41 | + |
| 42 | + Uniform lengths is typically only of interest in numerical tests |
| 43 | + Assigning signs is useful for reproducability of results. |
| 44 | + """ |
| 45 | + |
| 46 | + # Parameters |
| 47 | + # Origin location |
| 48 | + p0 = [0, 0, 0] |
| 49 | + |
| 50 | + # Initial direction |
| 51 | + direction = [0, 1, 0] |
| 52 | + |
| 53 | + # First vessel diameter |
| 54 | + D0 = 2 * radius0 |
| 55 | + |
| 56 | + # By convention we chose gam <=1 so D1 will always be smaller or equal to D2 |
| 57 | + if gam > 1: |
| 58 | + raise Exception("Please choose a value for gamma lower or equal to 1") |
| 59 | + |
| 60 | + # Surface normal function |
| 61 | + # The surface normal here is fixed because we want to stay in the x,y plane. |
| 62 | + # But this could be the normal of any surface. |
| 63 | + def normal(x, y, z): |
| 64 | + return [0, 0, 1] |
| 65 | + |
| 66 | + #### Creation of the graph |
| 67 | + |
| 68 | + # Create a networkx graph |
| 69 | + G = nx.DiGraph() |
| 70 | + |
| 71 | + # Create the first vessel |
| 72 | + ######################### |
| 73 | + L = D0 * lmbda |
| 74 | + |
| 75 | + G.add_edge(0, 1) |
| 76 | + |
| 77 | + nx.set_node_attributes(G, p0, "pos") |
| 78 | + nx.set_edge_attributes(G, D0 / 2, "radius") |
| 79 | + |
| 80 | + G.nodes[1]["pos"] = np.asarray(p0) + np.asarray(direction)*L |
| 81 | + new_node_ix = 1 |
| 82 | + |
| 83 | + #### Iteration to create the other vessels following a given law |
| 84 | + |
| 85 | + # list of the vessels from the previous generation |
| 86 | + previous_edges = [(0, 1)] |
| 87 | + |
| 88 | + for igen in range(1, N): |
| 89 | + current_edges = [] |
| 90 | + for e in previous_edges: |
| 91 | + # Parent vessel properties |
| 92 | + previousvessel = [G.nodes[e[0]]["pos"], G.nodes[e[1]]["pos"]] |
| 93 | + D0 = G.edges[e]["radius"] * 2 |
| 94 | + |
| 95 | + # Daughter diameters |
| 96 | + D2 = D0 * (gam**3 + 1) ** (-1 / 3) |
| 97 | + D1 = gam * D2 |
| 98 | + # Daughter lengths |
| 99 | + L2 = lmbda * D2 |
| 100 | + L1 = lmbda * 0.6 * D1 |
| 101 | + |
| 102 | + if uniform_lengths: |
| 103 | + L1, L2 = L, L |
| 104 | + # Bifurcation angles |
| 105 | + # angle for the smallest vessel |
| 106 | + cos1 = (D0**4 + D1**4 - (D0**3 - D1**3) ** (4 / 3)) / ( |
| 107 | + 2 * D0**2 * D1**2 |
| 108 | + ) |
| 109 | + angle1 = np.degrees(np.arccos(cos1)) |
| 110 | + # angle for the biggest vessel |
| 111 | + cos2 = (D0**4 + D2**4 - (D0**3 - D2**3) ** (4 / 3)) / ( |
| 112 | + 2 * D0**2 * D2**2 |
| 113 | + ) |
| 114 | + angle2 = np.degrees(np.arccos(cos2)) |
| 115 | + |
| 116 | + # randomly chopse which vessel go to the right/left |
| 117 | + if not signs: |
| 118 | + sign1 = random.choice((-1, 1)) |
| 119 | + else: |
| 120 | + sign1 = signs[0] |
| 121 | + del signs[0] |
| 122 | + sign2 = -1 * sign1 |
| 123 | + |
| 124 | + branch1 = [sign1, angle1, L1] |
| 125 | + branch2 = [sign2, angle2, L2] |
| 126 | + |
| 127 | + parent_edge_v2 = e[1] # vertex we want to connect to |
| 128 | + |
| 129 | + # Check that the new edge does not overlap other edges |
| 130 | + for sign, angle, L in [branch1, branch2]: |
| 131 | + new_node_pos = compute_vessel_endpoint( |
| 132 | + previousvessel, normal(*previousvessel[1]), sign * angle, L |
| 133 | + ) |
| 134 | + |
| 135 | + all_pos = np.asarray(list(nx.get_node_attributes(G, "pos").values())) |
| 136 | + intersecting_lines = 0 |
| 137 | + C = Point(all_pos[parent_edge_v2]) |
| 138 | + D = Point(new_node_pos) |
| 139 | + |
| 140 | + non_neighbor_edges = copy.deepcopy(list(G.edges())) |
| 141 | + |
| 142 | + neighbor_edges = copy.deepcopy( |
| 143 | + list(G.in_edges(parent_edge_v2)) + list(G.out_edges(parent_edge_v2)) |
| 144 | + ) |
| 145 | + |
| 146 | + for en in list(set(neighbor_edges)): |
| 147 | + non_neighbor_edges.remove(en) |
| 148 | + |
| 149 | + for v1, v2 in non_neighbor_edges: |
| 150 | + A = Point(all_pos[v1]) |
| 151 | + B = Point(all_pos[v2]) |
| 152 | + if doIntersect(A, B, C, D): |
| 153 | + intersecting_lines += 1 |
| 154 | + |
| 155 | + |
| 156 | + #if no edges overlap with this new one |
| 157 | + # we go ahead and add it |
| 158 | + if intersecting_lines < 1: |
| 159 | + new_node_ix += 1 |
| 160 | + |
| 161 | + new_edge = (e[1], new_node_ix) |
| 162 | + G.add_edge(*new_edge) |
| 163 | + |
| 164 | + # Set the location according to length and angle |
| 165 | + G.nodes[new_node_ix]["pos"] = new_node_pos |
| 166 | + |
| 167 | + # Set radius |
| 168 | + G.edges[new_edge]["radius"] = D1 / 2 |
| 169 | + |
| 170 | + # Add to the pool of vessels for this generation |
| 171 | + current_edges.append(new_edge) |
| 172 | + |
| 173 | + previous_edges = current_edges |
| 174 | + |
| 175 | + return G |
| 176 | + |
| 177 | + |
| 178 | +class Point: |
| 179 | + def __init__(self, xx): |
| 180 | + self.x = xx[0] |
| 181 | + self.y = xx[1] |
| 182 | + |
| 183 | +# Shamelessly copied from stackoverflow :-) |
| 184 | +# Given three collinear points p, q, r, the function checks if |
| 185 | +# point q lies on line segment 'pr' |
| 186 | +def onSegment(p, q, r): |
| 187 | + if ( |
| 188 | + (q.x <= max(p.x, r.x)) |
| 189 | + and (q.x >= min(p.x, r.x)) |
| 190 | + and (q.y <= max(p.y, r.y)) |
| 191 | + and (q.y >= min(p.y, r.y)) |
| 192 | + ): |
| 193 | + return True |
| 194 | + return False |
| 195 | + |
| 196 | + |
| 197 | +def orientation(p, q, r): |
| 198 | + # to find the orientation of an ordered triplet (p,q,r) |
| 199 | + # function returns the following values: |
| 200 | + # 0 : Collinear points |
| 201 | + # 1 : Clockwise points |
| 202 | + # 2 : Counterclockwise |
| 203 | + |
| 204 | + # See https://www.geeksforgeeks.org/orientation-3-ordered-points/amp/ |
| 205 | + # for details of below formula. |
| 206 | + |
| 207 | + val = (float(q.y - p.y) * (r.x - q.x)) - (float(q.x - p.x) * (r.y - q.y)) |
| 208 | + if val > 0: |
| 209 | + |
| 210 | + # Clockwise orientation |
| 211 | + return 1 |
| 212 | + elif val < 0: |
| 213 | + |
| 214 | + # Counterclockwise orientation |
| 215 | + return 2 |
| 216 | + else: |
| 217 | + |
| 218 | + # Collinear orientation |
| 219 | + return 0 |
| 220 | + |
| 221 | + |
| 222 | +# This code is contributed by Ansh Riyal |
| 223 | +def doIntersect(p1, q1, p2, q2): |
| 224 | + |
| 225 | + # Find the 4 orientations required for |
| 226 | + # the general and special cases |
| 227 | + o1 = orientation(p1, q1, p2) |
| 228 | + o2 = orientation(p1, q1, q2) |
| 229 | + o3 = orientation(p2, q2, p1) |
| 230 | + o4 = orientation(p2, q2, q1) |
| 231 | + |
| 232 | + # General case |
| 233 | + if (o1 != o2) and (o3 != o4): |
| 234 | + return True |
| 235 | + |
| 236 | + # Special Cases |
| 237 | + |
| 238 | + # p1 , q1 and p2 are collinear and p2 lies on segment p1q1 |
| 239 | + if (o1 == 0) and onSegment(p1, p2, q1): |
| 240 | + return True |
| 241 | + |
| 242 | + # p1 , q1 and q2 are collinear and q2 lies on segment p1q1 |
| 243 | + if (o2 == 0) and onSegment(p1, q2, q1): |
| 244 | + return True |
| 245 | + |
| 246 | + # p2 , q2 and p1 are collinear and p1 lies on segment p2q2 |
| 247 | + if (o3 == 0) and onSegment(p2, p1, q2): |
| 248 | + return True |
| 249 | + |
| 250 | + # p2 , q2 and q1 are collinear and q1 lies on segment p2q2 |
| 251 | + if (o4 == 0) and onSegment(p2, q1, q2): |
| 252 | + return True |
| 253 | + |
| 254 | + # If none of the cases |
| 255 | + return False |
| 256 | + |
| 257 | + |
| 258 | + |
| 259 | +def translation(p0,direction,length) : |
| 260 | + #normalise the direction vector |
| 261 | + direction=normalize(direction) |
| 262 | + |
| 263 | + # compute the location of the end of the new vessel |
| 264 | + pnew=[(p0[i]+direction[i]*length) for i in range(len(p0))] |
| 265 | + return pnew |
| 266 | + |
| 267 | +def rotate_in_plane(x,n,angle): |
| 268 | + """ angle : rotation degree """ |
| 269 | + |
| 270 | + rotation_radians = np.radians(angle) |
| 271 | + |
| 272 | + rotation_axis = np.array(n) |
| 273 | + |
| 274 | + rotation_vector = rotation_radians * rotation_axis |
| 275 | + |
| 276 | + from scipy.spatial.transform import Rotation |
| 277 | + rotation = Rotation.from_rotvec(rotation_vector) |
| 278 | + |
| 279 | + rotated_vec = rotation.apply(x) |
| 280 | + |
| 281 | + return rotated_vec |
| 282 | + |
| 283 | + |
| 284 | +def normalize(x): |
| 285 | + return [x[i] / np.linalg.norm(x) for i in range(len(x))] |
| 286 | + |
| 287 | +def project_onto_plane(x, n): |
| 288 | + d = np.dot(x, n) / np.linalg.norm(n) |
| 289 | + p = [d * normalize(n)[i] for i in range(len(n))] |
| 290 | + return [x[i] - p[i] for i in range(len(x))] |
| 291 | + |
| 292 | + |
| 293 | +def compute_vessel_endpoint (previousvessel, surfacenormal,angle,length) : |
| 294 | + """ From a previous vessel defined in 3D, the brain surface at the end of the previous vessel, angle and length : |
| 295 | + compute the coordinate of the end node of the current vessel """ |
| 296 | + |
| 297 | + # project the previous vessel in the current plane |
| 298 | + # and get the direction vector of the previous vessel |
| 299 | + pm1=previousvessel[0] |
| 300 | + p0=previousvessel[1] |
| 301 | + |
| 302 | + vector_previous=[p0[i]-pm1[i] for i in range(len(pm1))] |
| 303 | + |
| 304 | + previousdir = project_onto_plane(vector_previous, surfacenormal) |
| 305 | + |
| 306 | + |
| 307 | + # compute the direction vector of the new vessel with the angle |
| 308 | + newdir=rotate_in_plane(previousdir,surfacenormal,angle) |
| 309 | + |
| 310 | + # compute the location of the end of the new vessel |
| 311 | + pnew=translation(p0,newdir,length) |
| 312 | + |
| 313 | + |
| 314 | + return pnew |
0 commit comments