Skip to content

Commit f56b6c8

Browse files
author
Nina Forde
committed
2 parents f4ae7fb + fc36311 commit f56b6c8

File tree

1 file changed

+30
-0
lines changed

1 file changed

+30
-0
lines changed

README.md

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,3 +13,33 @@ data:
1313
https://osf.io/qrs4h/
1414
telecharger Raw data Part 1.zip et l'extraire dans le dossier ./data
1515
telecharger https://osf.io/ztw8u/ ChanlocsMaster.mat et l'ajouter dans le dossier Raw data part 1 ci dessus
16+
17+
## Reproducing Fig 2A of (Williams et al, 2021)
18+
19+
### Using the code provided with the paper and the preprocessed datasets
20+
21+
2. Run the analysis and create the intermediatary file that processes the subject results to estimate the means etc [RewardProcessing_Plots.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/plot/RewardProcessing_Plots.m).
22+
3. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R).
23+
24+
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/preprocessed100.png)
25+
26+
### Using the code provided with the paper and the raw datasets (without ICA manual)
27+
28+
1. Add path to dependencies with [demarragemaison.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/header%20script/demarragemaison.m). Note: this file has to be edited to include your own pathes.
29+
3. Run the analysis and create the intermediatary file that processes the subject results to estimate the means etc [sansICA75.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/article/sansICA75.m). Note: this file has to be edited to include your own pathes and [at this line](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/article/sansICA75.m#L78) update the number of subjects to be included.
30+
4. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R). Note: the number of participants has to be updated to the number of participants included.
31+
32+
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/noica73.png)
33+
34+
### Using EEGlab and the raw datasets
35+
36+
3. Run the analysis [version100sujets.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/100%20sujets/version100sujets.m). Note: this file has to be edited to include your own pathes and [at these lines](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/100%20sujets/version100sujets.m#L20-L21) update the number of subjects to be included.
37+
4. Create the intermediary file with [variablespourfig1.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/figure1/variablespourfig1.m)
38+
5. Create the figures using the R script [fig2Av2.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/codeR/fig2Av2.R). Note: the number of participants has to be updated to the number of participants included.
39+
40+
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/100sujetseeglabfinal.png)
41+
42+
### Using automagic and the raw datasets (work-in-progress)
43+
44+
1. Format the dataset using BIDS so that it can be recognized by automagic
45+
2. Run the analysis with [script25janv.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/automagic/janvier/script25janv.m) Note: this code is not ready-to-use yet but includes importing the data and creating a project, the pipeline is to be updated to match the paper as well as the intiatization of the project.

0 commit comments

Comments
 (0)