Skip to content

Commit f8d9945

Browse files
authored
Merge pull request #1 from AyaKabbara/main
EEGLAB and BS merging
2 parents 62a449b + e658901 commit f8d9945

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

77 files changed

+1772
-4418
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,3 +7,4 @@ data/*
77
dependencies/*
88
*.asv
99
results/*
10+
*.DS_Store

README.md

Lines changed: 8 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -18,28 +18,26 @@ telecharger https://osf.io/ztw8u/ ChanlocsMaster.mat et l'ajouter dans le dossie
1818

1919
### Using the code provided with the paper and the preprocessed datasets
2020

21-
2. Run the analysis and create the intermediatary file that processes the subject results to estimate the means etc [RewardProcessing_Plots.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/plot/RewardProcessing_Plots.m).
22-
3. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R).
21+
1. Run the analysis and create the intermediatary file that processes the subject results to estimate the means etc [RewardProcessing_Plots.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/plot/RewardProcessing_Plots.m).
22+
2. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R).
2323

2424
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/preprocessed100.png)
2525

2626
### Using the code provided with the paper and the raw datasets (without ICA manual)
2727

2828
1. Add path to dependencies with [demarragemaison.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/header%20script/demarragemaison.m). Note: this file has to be edited to include your own pathes.
29-
3. Run the analysis and create the intermediatary file that processes the subject results to estimate the means etc [sansICA75.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/article/sansICA75.m). Note: this file has to be edited to include your own pathes and [at this line](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/article/sansICA75.m#L78) update the number of subjects to be included.
30-
4. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R). Note: the number of participants has to be updated to the number of participants included.
29+
2. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R). Note: the number of participants has to be updated to the number of participants included.
3130

3231
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/noica73.png)
3332

3433
### Using EEGlab and the raw datasets
3534

36-
3. Run the analysis [version100sujets.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/100%20sujets/version100sujets.m). Note: this file has to be edited to include your own pathes and [at these lines](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/100%20sujets/version100sujets.m#L20-L21) update the number of subjects to be included.
37-
4. Create the intermediary file with [variablespourfig1.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/figure1/variablespourfig1.m)
38-
5. Create the figures using the R script [fig2Av2.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/codeR/fig2Av2.R). Note: the number of participants has to be updated to the number of participants included.
35+
1. Run the analysis [eeglab_preprocessing.m](https://github.com/AyaKabbara/StageEEGpre/blob/main/src/eeglab/eeglab_preprocessing.m).
36+
2. Create the figures using the R script [fig2Av2.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/codeR/fig2Av2.R). Note: the number of participants has to be updated to the number of participants included, the name of csv files should be changed accordingly.
3937

4038
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/100sujetseeglabfinal.png)
4139

42-
### Using automagic and the raw datasets (work-in-progress)
40+
### Using Brainstorm and the raw datasets
4341

44-
1. Format the dataset using BIDS so that it can be recognized by automagic
45-
2. Run the analysis with [script25janv.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/automagic/janvier/script25janv.m) Note: this code is not ready-to-use yet but includes importing the data and creating a project, the pipeline is to be updated to match the paper as well as the intiatization of the project.
42+
1. Convert the dataset into EEGLAB set using the following functions: [toset.m](https://github.com/AyaKabbara/StageEEGpre/blob/main/src/BST/toset.m) so that it can be recognized by BS
43+
2. Run the analysis with [bsPreprocessing.m](https://github.com/AyaKabbara/StageEEGpre/blob/main/src/BST/bsPreprocessing.m). Note: the paths should be changed

figures/fig2_bs2_final.jpeg

1020 KB
Loading

figures/fig2_eeglab_final.jpeg

1020 KB
Loading

figures/fig2_eeglab_final2.jpeg

1.05 MB
Loading

figures/fig2_ft.jpeg

1.05 MB
Loading

figures/fig2_ft_final.jpeg

1.67 MB
Loading

figures/fig2_ft_final200.jpeg

1.02 MB
Loading

figures/fig2_ref.jpeg

1010 KB
Loading

figures/fig3_bs.jpeg

1.65 MB
Loading

0 commit comments

Comments
 (0)