You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+8-10Lines changed: 8 additions & 10 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -18,28 +18,26 @@ telecharger https://osf.io/ztw8u/ ChanlocsMaster.mat et l'ajouter dans le dossie
18
18
19
19
### Using the code provided with the paper and the preprocessed datasets
20
20
21
-
2. Run the analysis and create the intermediatary file that processes the subject results to estimate the means etc [RewardProcessing_Plots.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/plot/RewardProcessing_Plots.m).
22
-
3. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R).
21
+
1. Run the analysis and create the intermediatary file that processes the subject results to estimate the means etc [RewardProcessing_Plots.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/plot/RewardProcessing_Plots.m).
22
+
2. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R).
23
23
24
24
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/preprocessed100.png)
25
25
26
26
### Using the code provided with the paper and the raw datasets (without ICA manual)
27
27
28
28
1. Add path to dependencies with [demarragemaison.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/header%20script/demarragemaison.m). Note: this file has to be edited to include your own pathes.
29
-
3. Run the analysis and create the intermediatary file that processes the subject results to estimate the means etc [sansICA75.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/article/sansICA75.m). Note: this file has to be edited to include your own pathes and [at this line](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/article/sansICA75.m#L78) update the number of subjects to be included.
30
-
4. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R). Note: the number of participants has to be updated to the number of participants included.
29
+
2. Create the figures using the R script [RewardProcessing_Plots_and_Statistics.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/graphiques/RewardProcessing_Plots_and_Statistics.R). Note: the number of participants has to be updated to the number of participants included.
31
30
32
31
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/noica73.png)
33
32
34
33
### Using EEGlab and the raw datasets
35
34
36
-
3. Run the analysis [version100sujets.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/100%20sujets/version100sujets.m). Note: this file has to be edited to include your own pathes and [at these lines](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/100%20sujets/version100sujets.m#L20-L21) update the number of subjects to be included.
37
-
4. Create the intermediary file with [variablespourfig1.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/eeglabcode/janvier/figure1/variablespourfig1.m)
38
-
5. Create the figures using the R script [fig2Av2.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/codeR/fig2Av2.R). Note: the number of participants has to be updated to the number of participants included.
35
+
1. Run the analysis [eeglab_preprocessing.m](https://github.com/AyaKabbara/StageEEGpre/blob/main/src/eeglab/eeglab_preprocessing.m).
36
+
2. Create the figures using the R script [fig2Av2.R](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/codeR/fig2Av2.R). Note: the number of participants has to be updated to the number of participants included, the name of csv files should be changed accordingly.
39
37
40
38
We obtain [this figure](https://github.com/Inria-Empenn/StageEEGpre/blob/main/figures/articke%20fig2/100sujetseeglabfinal.png)
41
39
42
-
### Using automagic and the raw datasets (work-in-progress)
40
+
### Using Brainstorm and the raw datasets
43
41
44
-
1.Format the dataset using BIDS so that it can be recognized by automagic
45
-
2. Run the analysis with [script25janv.m](https://github.com/Inria-Empenn/StageEEGpre/blob/main/src/automagic/janvier/script25janv.m) Note: this code is not ready-to-use yet but includes importing the data and creating a project, the pipeline is to be updated to match the paper as well as the intiatization of the project.
42
+
1.Convert the dataset into EEGLAB set using the following functions: [toset.m](https://github.com/AyaKabbara/StageEEGpre/blob/main/src/BST/toset.m)so that it can be recognized by BS
43
+
2. Run the analysis with [bsPreprocessing.m](https://github.com/AyaKabbara/StageEEGpre/blob/main/src/BST/bsPreprocessing.m). Note: the paths should be changed
0 commit comments