docker build . -t fmri-conf-runnerSee https://github.com/Inria-Empenn/fmri_feature_model/tree/master
Modify data_desc_sample.json to your usage
- Run configurations list from
/config.csvfile. - Read data from
/data - Write NiPype cache in
/workdir - Write results to
/results
Change /local/path/to/... to your local paths
docker run -u root -v "/local/path/to/data:/data" -v "/local/path/to/results:/results" -v "/local/path/to/workdir:/work" -v "/local/path/to/configs:/configs" fmri-conf-runner python -u run.py --configs "/configs/config.csv" --data /data/data_desc.json --ref /configs/config_ref.csvUse run_configs.sh
- Start 40 jobs in parallel.
- Timeout for each job is 4h
- Needs 40 configurations named CSV
config_[1..40].csv
oarsub -S -n fmri-conf-runner ./run_configs.sh- Read data from
/results - Write results to
/results- 'mean_result.nii' : mean statistic map
- 'correlations.csv' : pairwise correlations
- 'dataset.csv' :
Change /local/path/to/... to your local paths
docker run -u root -v "/local/path/to/results:/results" fmri-conf-runner python -u postprocess.py --results "/results"On Abaca (Inria cluster), use postprocess.sh
oarsub -S -n postprocess ./postprocess.sh