@@ -101,6 +101,7 @@ def get_train_test(self, path: str, dataset: pd.DataFrame, train_size: float, it
101101
102102 def write_subset (self , ids : [], dataset : DataFrame , path : str , name : str ):
103103 size = len (ids )
104+ filtered_ds = dataset [dataset ['id' ].isin (ids )]
104105 ds_name = f'sub_dataset_{ size } _{ name } .csv'
105106 mean_path = os .path .join (path , f'tmp_mean_result_{ name } .nii' )
106107 files = []
@@ -109,9 +110,9 @@ def write_subset(self, ids: [], dataset: DataFrame, path: str, name: str):
109110 mean_img = self .get_mean_image (files , 10 )
110111 nib .save (mean_img , mean_path )
111112 print (f"Computing correlations to mean image for [{ size } ] results..." )
112- for index , row in dataset .iterrows ():
113+ for index , row in filtered_ds .iterrows ():
113114 img = os .path .join (path , row ['id' ], '_subject_id_01' , 'result.nii' )
114- dataset .at [index , 'from_mean' ] = self .corr_srv .get_correlation_coefficient (mean_path , img , 'spearman' )
115- dataset .to_csv (os .path .join (path , ds_name ),
115+ filtered_ds .at [index , 'from_mean' ] = self .corr_srv .get_correlation_coefficient (mean_path , img , 'spearman' )
116+ filtered_ds .to_csv (os .path .join (path , ds_name ),
116117 index = False , sep = ';' )
117118 print (f"Written to [{ ds_name } ]." )
0 commit comments