Skip to content

Commit 172d5cf

Browse files
author
jnorthrup
committed
add adaptive context engineering to web and repl
- Checkpoint without eviction (Strategy 5) - Microkernel generation before checkpoint creation - Dynamic model-specific thresholds (90% for 64K → 15% for 1MB) - Context mode transitions: SUSPENDED, HIGH_DETAIL, HIGH_CAPACITY, NORMAL - RecallContext tool for breadcrumb trail queries - MicrocontextSubroutine for temporary context expansion - Tile generation at 33% context for future work streams - Full integration in ChatService with mode transitions - Harmonic miss tracking for context pressure analysis
1 parent d8c3670 commit 172d5cf

29 files changed

+10297
-3580
lines changed

CHECKPOINT_WORKFLOW.md

Lines changed: 196 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,196 @@
1+
# Checkpoint Workflow with Microkernel and Context Modes
2+
3+
## Overview
4+
5+
Complete workflow for checkpoint creation with microkernel generation and context mode transitions.
6+
7+
## Checkpoint Workflow
8+
9+
### 1. Threshold Detection
10+
11+
```python
12+
# Model-specific dynamic threshold
13+
context_window = CONTEXT_WINDOWS[model_id]
14+
threshold_pct = calculate_checkpoint_threshold(context_window)
15+
# 64K → 90%, 128K → 71%, 200K → 59%, 1MB → 15%
16+
17+
checkpoint_threshold = int(context_window * threshold_pct)
18+
19+
if token_count >= checkpoint_threshold:
20+
# Trigger checkpoint creation
21+
```
22+
23+
### 2. Microkernel Generation (BEFORE Dump)
24+
25+
```python
26+
microkernel = generate_microkernel(message_lists)
27+
28+
# Microkernel contains:
29+
{
30+
"tasks": [
31+
{"content": "Implement OAuth callback", "status": "in_progress"},
32+
{"content": "Add error handling", "status": "pending"}
33+
],
34+
"goals": [
35+
"Build OAuth login system",
36+
"Integrate with JWT tokens"
37+
],
38+
"current_activity": [
39+
{"tool": "Edit", "context": "auth.ts - adding callback handler"},
40+
{"tool": "Read", "context": "middleware.ts - reviewing auth flow"}
41+
],
42+
"planned_verbs": ["implement", "test", "debug"],
43+
"important_breadcrumbs": [
44+
"auth.ts",
45+
"middleware.ts",
46+
"jwt.ts",
47+
"test_oauth.py"
48+
]
49+
}
50+
```
51+
52+
**Purpose**: Model knows what will be important breadcrumbs before checkpoint is created.
53+
54+
### 3. Checkpoint Creation
55+
56+
```python
57+
slab_id = await checkpoint_system.create_checkpoint(
58+
message_lists=message_lists,
59+
microkernel=microkernel # Injected into payload and backdrop
60+
)
61+
62+
# Checkpoint stored:
63+
# - slab_001/payload.mp4 (QR-encoded, includes microkernel)
64+
# - slab_001/backdrop.mp4 (QR-encoded, includes microkernel)
65+
# - Indexed: hashtable + (future) vector store
66+
```
67+
68+
**Context NOT evicted** - remains in L1, checkpoint indexed for recall.
69+
70+
### 4. Context Mode Transition
71+
72+
After checkpoint created, model can operate in different modes:
73+
74+
#### Mode 1: SUSPENDED (Microkernel Only)
75+
76+
```python
77+
context_mode.transition_to_suspended(slab_id, microkernel)
78+
79+
# Model sees:
80+
# - Tasks: 2 pending
81+
# - Goals: Build OAuth login
82+
# - Activity: Editing auth.ts
83+
# - Breadcrumbs: auth.ts, middleware.ts, jwt.ts, test_oauth.py
84+
```
85+
86+
**Use case**: Lightweight operation with just the gist. Full context checkpointed but not loaded.
87+
88+
#### Mode 2: HIGH_DETAIL (Expanded Context for Specific Focus)
89+
90+
```python
91+
context_mode.transition_to_high_detail(focus="OAuth token refresh")
92+
93+
# Model can now:
94+
# 1. Use RecallContext("OAuth token refresh") → breadcrumb trail
95+
# 2. Use MicrocontextSubroutine("OAuth token refresh", depth=3, focus="operational")
96+
# → Temporarily expand context with digested slabs
97+
```
98+
99+
**Use case**: Deep dive on specific aspect. Expand context selectively for that focus.
100+
101+
**Workflow**:
102+
1. Query breadcrumbs: `RecallContext("OAuth token refresh")`
103+
2. Get trail: `[slab_001] → [slab_002] ⟳ [slab_003]`
104+
3. Digest relevant slabs: `MicrocontextSubroutine` returns operational state
105+
4. Work on detail with expanded context
106+
5. Return to SUSPENDED when done
107+
108+
#### Mode 3: HIGH_CAPACITY (Empty Context for Pure Thinking)
109+
110+
```python
111+
context_mode.transition_to_high_capacity()
112+
113+
# Context: EMPTY (as minimal as possible)
114+
# Only microkernel present
115+
# Maximum space for thinking
116+
```
117+
118+
**Use case**: Complex reasoning, planning, analysis without historical context weight.
119+
120+
**Workflow**:
121+
1. Enter HIGH_CAPACITY mode
122+
2. Context stripped to microkernel only
123+
3. Model has maximum token budget for pure thinking
124+
4. Think through problem, make plans, reason about architecture
125+
5. Return to NORMAL with conclusions
126+
127+
#### Mode 4: RESUME_NORMAL
128+
129+
```python
130+
context_mode.return_to_normal()
131+
132+
# Back to standard operation
133+
# Context from L1 still available
134+
```
135+
136+
## Complete Example
137+
138+
```python
139+
# 1. Detect threshold
140+
if token_count >= 117_823: # Claude 200K @ 59%
141+
# 2. Generate microkernel
142+
microkernel = generate_microkernel(message_lists)
143+
144+
# 3. Create checkpoint
145+
slab_id = await checkpoint_system.create_checkpoint(
146+
message_lists, microkernel=microkernel
147+
)
148+
logger.info(f"Checkpoint {slab_id} created with microkernel")
149+
150+
# 4. Transition to SUSPENDED mode
151+
context_mode.transition_to_suspended(slab_id, microkernel)
152+
# Model now operates on microkernel only
153+
154+
# Later: Need to work on OAuth implementation
155+
context_mode.transition_to_high_detail("OAuth implementation")
156+
157+
# Use tools to expand context
158+
trail = await recall_tool.execute("OAuth implementation")
159+
# Returns breadcrumb trail: [slab_001] → [slab_002] ⟳ [slab_003]
160+
161+
# Digest for detail work
162+
digest = await microcontext_tool.execute(
163+
query="OAuth implementation",
164+
depth=3,
165+
focus="operational"
166+
)
167+
# Returns: pending tasks, files modified, code changes
168+
169+
# Work on implementation with expanded detail...
170+
171+
# Now need to think through architecture
172+
context_mode.transition_to_high_capacity()
173+
# Context cleared to microkernel only, maximum thinking space
174+
175+
# Deep reasoning...
176+
177+
# Resume normal operation
178+
context_mode.return_to_normal()
179+
```
180+
181+
## Key Principles
182+
183+
1. **Microkernel before checkpoint**: Model knows what matters before dump
184+
2. **Context not evicted**: Checkpoint indexed, original context stays in L1
185+
3. **Mode transitions**: SUSPENDED → HIGH_DETAIL → HIGH_CAPACITY → NORMAL
186+
4. **Breadcrumb awareness**: Microkernel tells model what breadcrumbs are important
187+
5. **Empty for thinking**: HIGH_CAPACITY mode strips to minimal context
188+
6. **Tool-driven recall**: LLM decides when to expand (not automatic)
189+
190+
## Benefits
191+
192+
- **Context awareness**: Model understands what to remember before checkpoint
193+
- **Flexible modes**: Suspend, detail dive, or pure thinking as needed
194+
- **Lossless**: Full history preserved, selectively retrieved
195+
- **Efficient**: Only expand context when needed for specific tasks
196+
- **Cognitive offload**: Microkernel maintains minimal state between modes

0 commit comments

Comments
 (0)