-
Notifications
You must be signed in to change notification settings - Fork 164
/
Copy pathserial_pipeline.py
519 lines (434 loc) · 20.1 KB
/
serial_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# Copyright (c) OpenMMLab. All rights reserved.
"""Pipeline."""
import argparse
import datetime
import json
import time
import pdb
from abc import ABC, abstractmethod
from typing import List, Union, Generator
import pytoml
from loguru import logger
from huixiangdou.primitive import Query
from .helper import ErrorCode, is_truth
from .llm_client import ChatClient
from .retriever import CacheRetriever, Retriever
from .sg_search import SourceGraphProxy
from .session import Session
from .web_search import WebSearch
from .prompt import (INTENTION_TEMPLATE_CN, CR_CN, TOPIC_TEMPLATE_CN, SCORING_RELAVANCE_TEMPLATE_CN, KEYWORDS_TEMPLATE_CN, PERPLESITY_TEMPLATE_CN, SECURITY_TEMAPLTE_CN, GENERATE_TEMPLATE_CITATION_HEAD_CN)
from .prompt import (INTENTION_TEMPLATE_EN, CR_EN, TOPIC_TEMPLATE_EN, SCORING_RELAVANCE_TEMPLATE_EN, KEYWORDS_TEMPLATE_EN, PERPLESITY_TEMPLATE_EN, SECURITY_TEMAPLTE_EN, GENERATE_TEMPLATE_CITATION_HEAD_EN)
from .prompt import CitationGeneratePrompt
class Node(ABC):
"""Base abstract for compute graph."""
@abstractmethod
def process(self, sess: Session) -> Generator[Session, None, None]:
pass
class PreprocNode(Node):
"""PreprocNode is for coreference resolution and scoring based on group
chats.
See https://arxiv.org/abs/2405.02817
"""
def __init__(self, config: dict, llm: ChatClient, language: str):
self.llm = llm
self.enable_cr = config['worker']['enable_cr']
self.language = language
if language == 'zh':
self.INTENTION_TEMPLATE = INTENTION_TEMPLATE_CN
self.CR = CR_CN
else:
self.INTENTION_TEMPLATE = INTENTION_TEMPLATE_EN
self.CR = CR_EN
def process(self, sess: Session) -> Generator[Session, None, None]:
# check input
if sess.query.text is None or len(sess.query.text) < 3:
sess.code = ErrorCode.QUESTION_TOO_SHORT
yield sess
return
prompt = self.INTENTION_TEMPLATE.format(sess.query.text)
json_str = self.llm.generate_response(prompt=prompt, backend='remote')
sess.debug['PreprocNode_intention_response'] = json_str
try:
json_obj = json.loads(json_str)
intention = json_obj['intention'].lower()
topic = json_obj['topic'].lower()
for block_intention in ['问候', 'greeting']:
if block_intention in intention:
sess.code = ErrorCode.NOT_A_QUESTION
yield sess
return
for block_topic in ['身份', 'identity', 'undefine']:
if block_topic in topic:
sess.code = ErrorCode.NOT_A_QUESTION
yield sess
return
except Exception as e:
logger.error(str(e))
if not self.enable_cr:
return
if len(sess.groupchats) < 1:
logger.debug('history conversation empty, skip CR')
yield sess
return
talks = []
# rewrite user_id to ABCD..
name_map = dict()
name_int = ord('A')
for msg in sess.groupchats:
sender = msg.sender
if sender not in name_map:
name_map[sender] = chr(name_int)
name_int += 1
talks.append({'sender': name_map[sender], 'content': msg.query})
talk_str = json.dumps(talks, ensure_ascii=False)
prompt = self.CR.format(talk_str, sess.query.text)
self.cr = self.llm.generate_response(prompt=prompt, backend='remote')
if self.cr.startswith('“') and self.cr.endswith('”'):
self.cr = self.cr[1:len(self.cr) - 1]
if self.cr.startswith('"') and self.cr.endswith('"'):
self.cr = self.cr[1:len(self.cr) - 1]
sess.debug['cr'] = self.cr
# rewrite query
queries = [sess.query.text, self.cr]
self.query = '\n'.join(queries)
logger.debug('merge query and cr, query: {} cr: {}'.format(
self.query, self.cr))
class Text2vecNode(Node):
"""Text2vecNode is for retrieve from knowledge base."""
def __init__(self, config: dict, llm: ChatClient, retriever: Retriever,
language: str):
self.llm = llm
self.retriever = retriever
llm_config = config['llm']
self.context_max_length = llm_config['server'][
'local_llm_max_text_length']
if llm_config['enable_remote']:
self.context_max_length = llm_config['server'][
'remote_llm_max_text_length']
if language == 'zh':
self.TOPIC_TEMPLATE = TOPIC_TEMPLATE_CN
self.SCORING_RELAVANCE_TEMPLATE = SCORING_RELAVANCE_TEMPLATE_CN
self.GENERATE_TEMPLATE = GENERATE_TEMPLATE_CITATION_HEAD_CN
else:
self.TOPIC_TEMPLATE = TOPIC_TEMPLATE_EN
self.SCORING_RELAVANCE_TEMPLATE = SCORING_RELAVANCE_TEMPLATE_EN
self.GENERATE_TEMPLATE = GENERATE_TEMPLATE_CITATION_HEAD_EN
self.max_length = self.context_max_length - 2 * len(
self.GENERATE_TEMPLATE)
self.language = language
def process(self, sess: Session) -> Generator[Session, None, None]:
"""Try get reply with text2vec & rerank model."""
# retrieve from knowledge base
sess.chunk, sess.knowledge, sess.references, context_texts = self.retriever.query(sess.query,
context_max_length=self.max_length)
sess.debug['Text2vecNode_chunk'] = sess.chunk
if sess.knowledge is None:
sess.code = ErrorCode.UNRELATED
yield sess
return
yield sess
# get relavance between query and knowledge base
prompt = self.SCORING_RELAVANCE_TEMPLATE.format(
sess.query.text, sess.chunk)
truth, logs = is_truth(llm=self.llm,
prompt=prompt,
throttle=5,
default=10)
sess.debug['Text2vecNode_chunk_relavance'] = logs
if not truth:
yield sess
return
# answer the question
citation = CitationGeneratePrompt(self.language)
prompt = citation.build(texts=context_texts, question=sess.query.text)
# response = self.llm.generate_response(prompt=prompt, history=sess.history, backend='puyu')
response = self.llm.generate_response(prompt=prompt,
history=sess.history,
backend='remote')
sess.code = ErrorCode.SUCCESS
sess.response = response
yield sess
class WebSearchNode(Node):
"""WebSearchNode is for web search, use `ddgs` or `serper`"""
def __init__(self, config: dict, config_path: str, llm: ChatClient,
language: str):
self.llm = llm
self.config_path = config_path
self.enable = config['worker']['enable_web_search']
llm_config = config['llm']
self.context_max_length = llm_config['server'][
'local_llm_max_text_length']
if llm_config['enable_remote']:
self.context_max_length = llm_config['server'][
'remote_llm_max_text_length']
if language == 'zh':
self.SCORING_RELAVANCE_TEMPLATE = SCORING_RELAVANCE_TEMPLATE_CN
self.KEYWORDS_TEMPLATE = KEYWORDS_TEMPLATE_CN
self.GENERATE_TEMPLATE = GENERATE_TEMPLATE_CITATION_HEAD_CN
else:
self.SCORING_RELAVANCE_TEMPLATE = SCORING_RELAVANCE_TEMPLATE_EN
self.KEYWORDS_TEMPLATE = KEYWORDS_TEMPLATE_EN
self.GENERATE_TEMPLATE = GENERATE_TEMPLATE_CITATION_HEAD_EN
self.max_length = self.context_max_length - 2 * len(
self.GENERATE_TEMPLATE)
self.language = language
def process(self, sess: Session) -> Generator[Session, None, None]:
"""Try web search."""
if not self.enable:
logger.debug('disable web_search')
yield sess
return
engine = WebSearch(config_path=self.config_path)
prompt = self.KEYWORDS_TEMPLATE.format(sess.groupname, sess.query.text)
search_keywords = self.llm.generate_response(prompt)
sess.debug['WebSearchNode_keywords'] = prompt
articles, error = engine.get(query=search_keywords, max_article=2)
if error is not None:
sess.code = ErrorCode.WEB_SEARCH_FAIL
yield sess
return
texts = []
for article_id, article in enumerate(articles):
article.cut(0, self.max_length)
sess.web_knowledge += '\n'
sess.web_knowledge += article.content
sess.references.append(article.source)
texts.append(article.content)
sess.web_knowledge = sess.web_knowledge[0:self.max_length].strip()
if len(sess.web_knowledge) < 1:
sess.code = ErrorCode.NO_SEARCH_RESULT
yield sess
return
citation = CitationGeneratePrompt(self.language)
prompt = citation.build(texts=texts, question=sess.query.text)
# sess.response = self.llm.generate_response(prompt=prompt, history=sess.history, backend="puyu")
sess.response = self.llm.generate_response(prompt=prompt,
history=sess.history,
backend='remote')
sess.code = ErrorCode.SUCCESS
yield sess
class SGSearchNode(Node):
"""SGSearchNode is for retrieve from source graph."""
def __init__(self, config: dict, config_path: str, llm: ChatClient,
language: str):
self.llm = llm
self.language = language
self.enable = config['worker']['enable_sg_search']
self.config_path = config_path
if language == 'zh':
self.GENERATE_TEMPLATE = GENERATE_TEMPLATE_CITATION_HEAD_CN
else:
self.GENERATE_TEMPLATE = GENERATE_TEMPLATE_CITATION_HEAD_EN
self.language = language
def process(self, sess: Session) -> Generator[Session, None, None]:
"""Try get reply with source graph."""
if not self.enable:
logger.debug('disable sg_search')
yield sess
return
# if exit for other status (SECURITY or SEARCH_FAIL), still quit `sg_search`
if sess.code != ErrorCode.BAD_ANSWER and sess.code != ErrorCode.NO_SEARCH_RESULT and sess.code != ErrorCode.WEB_SEARCH_FAIL:
yield sess
return
sg = SourceGraphProxy(config_path=self.config_path,
language=self.language)
sess.sg_knowledge = sg.search(llm_client=self.llm,
question=sess.query.text,
groupname=sess.groupname)
sess.debug['SGSearchNode_knowledge'] = sess.sg_knowledge
if sess.sg_knowledge is None or len(sess.sg_knowledge) < 1:
sess.code = ErrorCode.SG_SEARCH_FAIL
yield sess
return
citation = CitationGeneratePrompt(self.language)
prompt = citation.build(texts=sess.sg_knowledge, question=sess.query.text)
# sess.response = self.llm.generate_response(prompt=prompt, history=sess.history, backend='puyu')
sess.response = self.llm.generate_response(prompt=prompt,
history=sess.history,
backend='remote')
if sess.response is None or len(sess.response) < 1:
sess.code = ErrorCode.LLM_NOT_RESPONSE_SG
yield sess
return
sess.code = ErrorCode.SUCCESS
yield sess
class SecurityNode(Node):
"""SecurityNode is for result check."""
def __init__(self, llm: ChatClient, language: str):
self.llm = llm
if language == 'zh':
self.PERPLESITY_TEMPLATE = PERPLESITY_TEMPLATE_CN
self.SECURITY_TEMAPLTE = SECURITY_TEMAPLTE_CN
else:
self.PERPLESITY_TEMPLATE = PERPLESITY_TEMPLATE_EN
self.SECURITY_TEMAPLTE = SECURITY_TEMAPLTE_EN
def process(self, sess: Session) -> Generator[Session, None, None]:
"""Check result with security."""
if len(sess.response) < 1:
sess.code = ErrorCode.BAD_ANSWER
yield sess
return
prompt = self.PERPLESITY_TEMPLATE.format(sess.query.text,
sess.response)
truth, logs = is_truth(llm=self.llm,
prompt=prompt,
throttle=9,
default=0)
sess.debug['SecurityNode_qa_perplex'] = logs
if truth:
sess.code = ErrorCode.BAD_ANSWER
yield sess
return
prompt = self.SECURITY_TEMAPLTE.format(sess.response)
truth, logs = is_truth(llm=self.llm,
prompt=prompt,
throttle=8,
default=0)
sess.debug['SecurityNode_template'] = logs
if truth:
sess.code = ErrorCode.SECURITY
yield sess
class SerialPipeline:
"""The SerialPipeline class orchestrates the logic of handling user queries,
generating responses and managing several aspects of a chat assistant. It
enables feature storage, language model client setup, time scheduling and
much more.
Attributes:
llm: A ChatClient instance that communicates with the language model.
fs: An instance of FeatureStore for loading and querying features.
config_path: A string indicating the path of the configuration file.
config: A dictionary holding the configuration settings.
language: A string indicating the language of the chat, default is 'zh' (Chinese). # noqa E501
context_max_length: An integer representing the maximum length of the context used by the language model. # noqa E501
Several template strings for various prompts are also defined.
"""
def __init__(self, work_dir: str, config_path: str, language: str = 'zh'):
"""Constructs all the necessary attributes for the worker object.
Args:
work_dir (str): The working directory where feature files are located.
config_path (str): The location of the configuration file.
language (str, optional): Specifies the language to be used. Defaults to 'zh' (Chinese). # noqa E501
"""
self.llm = ChatClient(config_path=config_path)
self.retriever = CacheRetriever(config_path=config_path).get()
self.config_path = config_path
self.config = None
self.language = language
with open(config_path, encoding='utf8') as f:
self.config = pytoml.load(f)
if self.config is None:
raise Exception('worker config can not be None')
def direct_chat(self, query: str):
""""Generate reply with LLM."""
return self.llm.generate_response(prompt=query, backend='remote')
def notify_badcase(self):
"""Receiving revert command means the current threshold is too low, use
higher one."""
delta = max(0, 1 - self.retriever.reject_throttle) * 0.02
logger.info(
'received badcase, use bigger reject_throttle. Current {}, delta {}'
.format(self.retriever.reject_throttle, delta))
# this throttle also means quality, cannot exceed 0.5
self.retriever.reject_throttle = min(
self.retriever.reject_throttle + delta, 0.5)
with open('throttle', 'w') as f:
f.write(str(self.retriever.reject_throttle))
def work_time(self):
"""If worktime enabled, determines the current time falls within the
scheduled working hours of the chat assistant.
Returns:
bool: True if the current time is within working hours, otherwise False. # noqa E501
"""
time_config = self.config['worker']['time']
if 'enable' in time_config:
# work time not enabled, start work
if not time_config['enable']:
return True
beginWork = datetime.datetime.now().strftime(
'%Y-%m-%d') + ' ' + time_config['start']
endWork = datetime.datetime.now().strftime(
'%Y-%m-%d') + ' ' + time_config['end']
beginWorkSeconds = time.time() - time.mktime(
time.strptime(beginWork, '%Y-%m-%d %H:%M:%S'))
endWorkSeconds = time.time() - time.mktime(
time.strptime(endWork, '%Y-%m-%d %H:%M:%S'))
if int(beginWorkSeconds) > 0 and int(endWorkSeconds) < 0:
if not time_config['has_weekday']:
return True
if int(datetime.datetime.now().weekday()) in range(7):
return True
return False
def generate(self,
query: Union[Query, str],
history: List[str] = [],
groupname: str = '',
groupchats: List[str] = []):
"""Processes user queries and generates appropriate responses. It
involves several steps including checking for valid questions,
extracting topics, querying the feature store, searching the web, and
generating responses from the language model.
Args:
query (Union[Query,str]): User's multimodal query.
history (str): Chat history.
groupname (str): The group name in which user asked the query.
groupchats (List[str]): The history conversation in group before user query.
Returns:
Session: Sync generator, this function would yield session which contains:
ErrorCode: An error code indicating the status of response generation. # noqa E501
str: Generated response to the user query.
references: List for referenced filename or web url
"""
# format input
if type(query) is str:
query = Query(text=query)
# build input session
sess = Session(query=query,
history=history,
groupname=groupname,
log_path=self.config['worker']['save_path'],
groupchats=groupchats)
# build pipeline
preproc = PreprocNode(self.config, self.llm, self.language)
text2vec = Text2vecNode(self.config, self.llm, self.retriever,
self.language)
websearch = WebSearchNode(self.config, self.config_path, self.llm,
self.language)
sgsearch = SGSearchNode(self.config, self.config_path, self.llm,
self.language)
check = SecurityNode(self.llm, self.language)
pipeline = [preproc, text2vec, websearch, sgsearch]
# run
exit_states = [
ErrorCode.QUESTION_TOO_SHORT, ErrorCode.NOT_A_QUESTION,
ErrorCode.NO_TOPIC, ErrorCode.UNRELATED
]
for node in pipeline:
for sess in node.process(sess):
yield sess
# unrelated to knowledge base or bad input, exit
if sess.code in exit_states:
break
if sess.code == ErrorCode.SUCCESS:
for sess in check.process(sess):
yield sess
# check success, return
if sess.code == ErrorCode.SUCCESS:
break
logger.debug(sess.debug)
return sess
# return sess.code, sess.response, sess.references
def parse_args():
"""Parses command-line arguments."""
parser = argparse.ArgumentParser(description='SerialPipeline.')
parser.add_argument('work_dir', type=str, help='Working directory.')
parser.add_argument(
'--config_path',
default='config.ini',
help='SerialPipeline configuration path. Default value is config.ini')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
bot = SerialPipeline(work_dir=args.work_dir, config_path=args.config_path)
queries = ['茴香豆是怎么做的']
for example in queries:
print(bot.generate(query=example, history=[], groupname=''))