-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcontroller.py
executable file
·229 lines (184 loc) · 9.6 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn
# Constructing Controller
class Controller:
def __init__(self, session,
baseline_acc,
discount_factor = 0.95,
ema_p = 0.05,
lstm_units = 100,
operation_types = 16,
output_policies = 10,
operation_prob = 11,
operation_mag = 10,
embedding_size = 20,
save_model = False,
load_model = False):
# parameters for constructing controller's structure
self._lstm_units = lstm_units
self._output_policies = output_policies
# attributes for embedding layer
self._embedding_size = embedding_size
self._embedding_weights = []
# attributes for experiments
self._operation_prob = operation_prob
self._operation_types = operation_types
self._operation_mag = operation_mag
self._search_space_size = [self._operation_types, self._operation_prob, self._operation_mag]
self.reward = tf.placeholder(tf.float32, ())
self.discounted_reward = baseline_acc
self.discount_factor = discount_factor
self.baseline = baseline_acc
self.ema_p = ema_p
# model checkpoints
self._save_model = save_model
self._load_model = load_model
# dummy input placeholder for the tensorflow graph
# generate random input
# timesteps is set to one because we only have 1-d input
self.x = tf.placeholder(dtype=tf.int32, shape=(1,None), name="input")
self.input_x = np.zeros((1,1), dtype=np.int32)
self.outputs = []
self.softmaxes = []
self.build_model()
# session oriented
self.sess = session
self.initialized = False
# build the model
# for more info about keras.models: https://keras.io/models/model/
# https://github.com/keras-team/keras/blob/master/keras/models.py
# https://github.com/keras-team/keras/blob/7a39b6c62d43c25472b2c2476bd2a8983ae4f682/keras/engine/training.py#L28
# =============================================
# using pure tensorflow
# https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/nn/dynamic_rnn
# https://manutdzou.github.io/2017/11/27/tensorflow-lstm.html
# https://www.oreilly.com/ideas/building-deep-learning-neural-networks-using-tensorflow-layers
def build_model(self):
# reuse trainable varaible of each layer to generate 5 policies
with tf.variable_scope("controller", reuse=tf.AUTO_REUSE):
# define LSTM layer
self.lstm_layer = rnn.BasicLSTMCell(num_units=self._lstm_units, name="controller/rnn_lstm")
self.state = self.lstm_layer.zero_state(1, tf.float32)
# define softmax classifier
init = tf.contrib.layers.xavier_initializer()
self.softmax_layer_type = tf.layers.Dense(self._operation_types, activation=tf.nn.softmax,
name="controller/softmax_layer_type", kernel_initializer=init)
self.softmax_layer_prob = tf.layers.Dense(self._operation_prob, activation=tf.nn.softmax,
name="controller/softmax_layer_prob", kernel_initializer=init)
self.softmax_layer_mag = tf.layers.Dense(self._operation_mag, activation=tf.nn.softmax,
name="controller/softmax_layer_mag", kernel_initializer=init)
# initialized embedding layers
for i in range(3):
weights = tf.get_variable('state_embeddings_%d' % i,
shape=[self._search_space_size[i] + 1, self._embedding_size],
initializer=tf.initializers.random_uniform(-1., 1.))
self._embedding_weights.append(weights)
input_layer = tf.nn.embedding_lookup(self._embedding_weights[-1], self.x)
for i in range(self._output_policies):
output_type, self.state = tf.nn.dynamic_rnn(self.lstm_layer,
input_layer,
initial_state=self.state,
dtype=tf.float32)
softmax_result_type = self.softmax_layer_type(output_type)
pred_type = tf.argmax(softmax_result_type, axis=-1)
cell_input = tf.cast(pred_type, tf.int32)
cell_input = tf.add(cell_input, 1)
input_layer = tf.nn.embedding_lookup(self._embedding_weights[0], cell_input)
# generate operation probabilities
output_prob, self.state = tf.nn.dynamic_rnn(self.lstm_layer,
input_layer,
initial_state=self.state,
dtype=tf.float32)
softmax_result_prob = self.softmax_layer_prob(output_prob)
pred_prob = tf.argmax(softmax_result_prob, axis=-1)
cell_input = tf.cast(pred_prob, tf.int32)
cell_input = tf.add(cell_input, 1)
input_layer = tf.nn.embedding_lookup(self._embedding_weights[1], cell_input)
# generate operation magnitude
output_mag, self.state = tf.nn.dynamic_rnn(self.lstm_layer,
input_layer,
initial_state=self.state,
dtype=tf.float32)
softmax_result_mag = self.softmax_layer_mag(output_mag)
pred_mag = tf.argmax(softmax_result_mag, axis=-1)
cell_input = tf.cast(pred_mag, tf.int32)
cell_input = tf.add(cell_input, 1)
input_layer = tf.nn.embedding_lookup(self._embedding_weights[2], cell_input)
self.softmaxes.append(softmax_result_type)
self.softmaxes.append(softmax_result_prob)
self.softmaxes.append(softmax_result_mag)
self.outputs.append(pred_type)
self.outputs.append(pred_prob)
self.outputs.append(pred_mag)
# calculate gradient of trainable_variables w.r.t outputs from model
# - Thus, w.r.t the probabilities of each layer
log_output = []
for output in self.softmaxes:
log_output.append(tf.math.log(output))
var_to_train = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='controller')
log_grad = tf.gradients(log_output, var_to_train)
self.gradients = [gradient * (self.reward) for gradient in log_grad]
self.gradients = zip(self.gradients, var_to_train)
self.optimizer = tf.train.GradientDescentOptimizer(0.0001).apply_gradients(self.gradients)
return
# method to update the parameters of lstm and softmax classifiers
def update(self, accuracy):
# Update trainable parameters via policy gradient
scale = (accuracy - self.baseline)
# initalize saver
if self._save_model or self._load_model:
saver = tf.train.Saver()
if self._load_model:
try:
saver.restore(self.sess, "./model.ckpt")
except:
pass
self.sess.run([self.optimizer], feed_dict={self.reward: scale, self.x: self.input_x})
self._exp_moving_average_baseline(accuracy)
if self._save_model:
save_path = saver.save(self.sess, "./model.ckpt")
return
# given random input with self.embeddingsize, generate subpolicies
def generate_subpolicies(self):
# feed to model, get softmax
# run global variable initializer if needed
if not self.initialized:
print("variable initialized")
self.sess.run(tf.global_variables_initializer())
self.initialized = True
# initalize saver
if self._save_model or self._load_model:
saver = tf.train.Saver()
if self._load_model:
# if no model exists, skip
try:
saver.restore(self.sess, "./model.ckpt")
except:
pass
# run session to get policies and softmaxes for inspection
generated_subpolicies, soft = self.sess.run([self.outputs, self.softmaxes], feed_dict={self.x: self.input_x})
if self._save_model:
save_path = saver.save(self.sess, "./model.ckpt")
# parse softmaxes to subpolicies
policies = []
for i in range(self._output_policies):
j = i * 3
policy = [generated_subpolicies[j], generated_subpolicies[j + 1], generated_subpolicies[j + 2]]
policies.append(policy)
# format policy
formated_policy = []
for p in policies:
operation, prob, mag = p
formated_policy.append([operation[0][0], prob[0][0], mag[0][0]])
print_policy(formated_policy)
return formated_policy
def _decay_rewards(self, accuracy):
self.discounted_reward = self.discounted_reward * self.discount_factor + accuracy
def _exp_moving_average_baseline(self, accuracy):
self.baseline = self.ema_p * accuracy + (1 - self.ema_p) * self.baseline
def print_policy(policies):
print("-"*30)
for p in policies:
operation, prob, mag = p
print("Operation: %-6dProb: %-6dMag:%-6d" %(operation, prob, mag))