|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | +from detectionmetrics.utils.metrics import MetricsFactory |
| 4 | + |
| 5 | + |
| 6 | +@pytest.fixture |
| 7 | +def metrics_factory(): |
| 8 | + """Fixture to create a MetricsFactory instance for testing""" |
| 9 | + return MetricsFactory(n_classes=3) |
| 10 | + |
| 11 | + |
| 12 | +def test_update_confusion_matrix(metrics_factory): |
| 13 | + """Test confusion matrix updates correctly""" |
| 14 | + pred = np.array([0, 1, 2, 2, 1]) |
| 15 | + gt = np.array([0, 1, 1, 2, 2]) |
| 16 | + |
| 17 | + metrics_factory.update(pred, gt) |
| 18 | + confusion_matrix = metrics_factory.get_confusion_matrix() |
| 19 | + |
| 20 | + expected = np.array([ |
| 21 | + [1, 0, 0], # True class 0 |
| 22 | + [0, 1, 1], # True class 1 |
| 23 | + [0, 1, 1], # True class 2 |
| 24 | + ]) |
| 25 | + assert np.array_equal(confusion_matrix, expected), "Confusion matrix mismatch" |
| 26 | + |
| 27 | + |
| 28 | +def test_get_tp_fp_fn_tn(metrics_factory): |
| 29 | + pred = np.array([0, 1, 1, 2, 2]) |
| 30 | + gt = np.array([0, 1, 1, 2, 2]) |
| 31 | + metrics_factory.update(pred, gt) |
| 32 | + |
| 33 | + assert np.array_equal(metrics_factory.get_tp(), np.array([1, 2, 2])) |
| 34 | + assert np.array_equal(metrics_factory.get_fp(), np.array([0, 0, 0])) |
| 35 | + assert np.array_equal(metrics_factory.get_fn(), np.array([0, 0, 0])) |
| 36 | + assert np.array_equal(metrics_factory.get_tn(), np.array([4, 3, 3])) |
| 37 | + |
| 38 | +def test_recall(metrics_factory): |
| 39 | + """Test recall calculation""" |
| 40 | + pred = np.array([0, 1, 2, 2, 1]) |
| 41 | + gt = np.array([0, 1, 1, 2, 2]) |
| 42 | + |
| 43 | + metrics_factory.update(pred, gt) |
| 44 | + |
| 45 | + expected_recall = np.array([1.0, 0.5, 0.5]) |
| 46 | + computed_recall = metrics_factory.get_recall() |
| 47 | + |
| 48 | + assert np.allclose(computed_recall, expected_recall, equal_nan=True) |
| 49 | + |
| 50 | +def test_accuracy(metrics_factory): |
| 51 | + """Test global accuracy calculation (non per-class)""" |
| 52 | + pred = np.array([0, 1, 2, 2, 1]) |
| 53 | + gt = np.array([0, 1, 1, 2, 2]) |
| 54 | + |
| 55 | + metrics_factory.update(pred, gt) |
| 56 | + |
| 57 | + TP = metrics_factory.get_tp(per_class=False) |
| 58 | + FP = metrics_factory.get_fp(per_class=False) |
| 59 | + FN = metrics_factory.get_fn(per_class=False) |
| 60 | + TN = metrics_factory.get_tn(per_class=False) |
| 61 | + |
| 62 | + total = TP + FP + FN + TN |
| 63 | + expected_accuracy = (TP + TN) / total if total > 0 else math.nan |
| 64 | + |
| 65 | + computed_accuracy = metrics_factory.get_accuracy(per_class=False) |
| 66 | + assert np.isclose(computed_accuracy, expected_accuracy, equal_nan=True) |
| 67 | + |
| 68 | +def test_f1_score(metrics_factory): |
| 69 | + """Test F1-score calculation""" |
| 70 | + pred = np.array([0, 1, 2, 2, 1]) |
| 71 | + gt = np.array([0, 1, 1, 2, 2]) |
| 72 | + |
| 73 | + metrics_factory.update(pred, gt) |
| 74 | + |
| 75 | + precision = np.array([1.0, 0.5, 0.5]) |
| 76 | + recall = np.array([1.0, 0.5, 0.5]) |
| 77 | + expected_f1 = 2 * (precision * recall) / (precision + recall) |
| 78 | + |
| 79 | + computed_f1 = metrics_factory.get_f1_score() |
| 80 | + |
| 81 | + assert np.allclose(computed_f1, expected_f1, equal_nan=True) |
| 82 | + |
| 83 | + |
| 84 | +def test_edge_cases(metrics_factory): |
| 85 | + """Test edge cases like empty arrays and division by zero""" |
| 86 | + pred = np.array([]) |
| 87 | + gt = np.array([]) |
| 88 | + |
| 89 | + with pytest.raises(AssertionError): |
| 90 | + metrics_factory.update(pred, gt) |
| 91 | + |
| 92 | + empty_metrics_factory = MetricsFactory(n_classes=3) |
| 93 | + |
| 94 | + assert np.isnan(empty_metrics_factory.get_precision(per_class=False)) |
| 95 | + assert np.isnan(empty_metrics_factory.get_recall(per_class=False)) |
| 96 | + assert np.isnan(empty_metrics_factory.get_f1_score(per_class=False)) |
| 97 | + assert np.isnan(empty_metrics_factory.get_iou(per_class=False)) |
| 98 | + |
| 99 | + |
| 100 | +def test_macro_micro_weighted(metrics_factory): |
| 101 | + """Test macro, micro, and weighted metric averaging""" |
| 102 | + pred = np.array([0, 1, 2, 2, 1]) |
| 103 | + gt = np.array([0, 1, 1, 2, 2]) |
| 104 | + |
| 105 | + metrics_factory.update(pred, gt) |
| 106 | + |
| 107 | + macro_f1 = metrics_factory.get_averaged_metric("f1_score", method="macro") |
| 108 | + micro_f1 = metrics_factory.get_averaged_metric("f1_score", method="micro") |
| 109 | + |
| 110 | + weights = np.array([0.2, 0.5, 0.3]) |
| 111 | + weighted_f1 = metrics_factory.get_averaged_metric("f1_score", method="weighted", weights=weights) |
| 112 | + |
| 113 | + assert 0 <= macro_f1 <= 1 |
| 114 | + assert 0 <= micro_f1 <= 1 |
| 115 | + assert 0 <= weighted_f1 <= 1 |
| 116 | + |
0 commit comments