|
| 1 | +package ai.koog.agents.planner |
| 2 | + |
| 3 | +import ai.koog.agents.core.agent.config.AIAgentConfig |
| 4 | +import ai.koog.agents.planner.goap.goap |
| 5 | +import ai.koog.agents.testing.tools.getMockExecutor |
| 6 | +import ai.koog.prompt.dsl.prompt |
| 7 | +import ai.koog.prompt.llm.OllamaModels |
| 8 | +import kotlinx.coroutines.test.runTest |
| 9 | +import kotlin.reflect.typeOf |
| 10 | +import kotlin.test.Test |
| 11 | +import kotlin.test.assertTrue |
| 12 | + |
| 13 | +class GOAPPlannerAgentTest { |
| 14 | + // Create a GOAP planner with a simple linear action sequence |
| 15 | + |
| 16 | + data class SimpleState( |
| 17 | + val hasKey: Boolean = false, |
| 18 | + val doorUnlocked: Boolean = false, |
| 19 | + val treasureFound: Boolean = false |
| 20 | + ) |
| 21 | + |
| 22 | + @Test |
| 23 | + fun testGOAPLinearPath() = runTest { |
| 24 | + val planner = goap<SimpleState>(typeOf<SimpleState>()) { |
| 25 | + // Action to get the key |
| 26 | + action( |
| 27 | + name = "Get key", |
| 28 | + precondition = { state -> !state.hasKey }, |
| 29 | + belief = { state -> state.copy(hasKey = true) }, |
| 30 | + cost = { 1.0 } |
| 31 | + ) { _, state -> |
| 32 | + state.copy(hasKey = true) |
| 33 | + } |
| 34 | + |
| 35 | + // Action to unlock door (requires key) |
| 36 | + action( |
| 37 | + name = "Unlock door", |
| 38 | + precondition = { state -> state.hasKey && !state.doorUnlocked }, |
| 39 | + belief = { state -> state.copy(doorUnlocked = true) }, |
| 40 | + cost = { 1.0 } |
| 41 | + ) { _, state -> |
| 42 | + state.copy(doorUnlocked = true) |
| 43 | + } |
| 44 | + |
| 45 | + // Action to find treasure (requires unlocked door) |
| 46 | + action( |
| 47 | + name = "Find treasure", |
| 48 | + precondition = { state -> state.doorUnlocked && !state.treasureFound }, |
| 49 | + belief = { state -> state.copy(treasureFound = true) }, |
| 50 | + cost = { 1.0 } |
| 51 | + ) { _, state -> |
| 52 | + state.copy(treasureFound = true) |
| 53 | + } |
| 54 | + |
| 55 | + // Goal: find the treasure |
| 56 | + goal( |
| 57 | + name = "Find treasure", |
| 58 | + condition = { state -> state.treasureFound } |
| 59 | + ) |
| 60 | + } |
| 61 | + |
| 62 | + val strategy = AIAgentPlannerStrategy("goap-linear-test", planner) |
| 63 | + val mockExecutor = getMockExecutor { |
| 64 | + mockLLMAnswer("OK").asDefaultResponse |
| 65 | + } |
| 66 | + |
| 67 | + val agentConfig = AIAgentConfig( |
| 68 | + prompt = prompt("goap") { system("GOAP agent") }, |
| 69 | + model = OllamaModels.Meta.LLAMA_3_2, |
| 70 | + maxAgentIterations = 50 |
| 71 | + ) |
| 72 | + |
| 73 | + val agent = PlannerAIAgent( |
| 74 | + promptExecutor = mockExecutor, |
| 75 | + strategy = strategy, |
| 76 | + agentConfig = agentConfig |
| 77 | + ) |
| 78 | + |
| 79 | + val initialState = SimpleState() |
| 80 | + val finalState = agent.run(initialState) |
| 81 | + |
| 82 | + assertTrue(finalState.hasKey, "Agent should have obtained the key") |
| 83 | + assertTrue(finalState.doorUnlocked, "Agent should have unlocked the door") |
| 84 | + assertTrue(finalState.treasureFound, "Agent should have found the treasure") |
| 85 | + } |
| 86 | + |
| 87 | + // Create a GOAP planner with multiple paths to the goal |
| 88 | + // One path is more expensive than the other |
| 89 | + |
| 90 | + data class PathState( |
| 91 | + val hasItem: Boolean = false, |
| 92 | + val goalReached: Boolean = false |
| 93 | + ) |
| 94 | + |
| 95 | + @Test |
| 96 | + fun testGOAPOptimalPathSelection() = runTest { |
| 97 | + val planner = goap<PathState>(typeOf<PathState>()) { |
| 98 | + // Expensive path: cost 10 |
| 99 | + action( |
| 100 | + name = "Expensive route", |
| 101 | + precondition = { state -> !state.hasItem }, |
| 102 | + belief = { state -> state.copy(hasItem = true) }, |
| 103 | + cost = { 10.0 } |
| 104 | + ) { _, _ -> |
| 105 | + throw IllegalStateException("Expensive route should not be selected") |
| 106 | + } |
| 107 | + |
| 108 | + // Cheap path: cost 1 |
| 109 | + action( |
| 110 | + name = "Cheap route", |
| 111 | + precondition = { state -> !state.hasItem }, |
| 112 | + belief = { state -> state.copy(hasItem = true) }, |
| 113 | + cost = { 1.0 } |
| 114 | + ) { _, state -> |
| 115 | + state.copy(hasItem = true) |
| 116 | + } |
| 117 | + |
| 118 | + // Final action |
| 119 | + action( |
| 120 | + name = "Reach goal", |
| 121 | + precondition = { state -> state.hasItem && !state.goalReached }, |
| 122 | + belief = { state -> state.copy(goalReached = true) }, |
| 123 | + cost = { 1.0 } |
| 124 | + ) { _, state -> |
| 125 | + state.copy(goalReached = true) |
| 126 | + } |
| 127 | + |
| 128 | + goal( |
| 129 | + name = "Reach goal", |
| 130 | + condition = { state -> state.goalReached } |
| 131 | + ) |
| 132 | + } |
| 133 | + |
| 134 | + val strategy = AIAgentPlannerStrategy("goap-optimal-path-test", planner) |
| 135 | + val mockExecutor = getMockExecutor { |
| 136 | + mockLLMAnswer("OK").asDefaultResponse |
| 137 | + } |
| 138 | + |
| 139 | + val agentConfig = AIAgentConfig( |
| 140 | + prompt = prompt("goap") { system("GOAP agent") }, |
| 141 | + model = OllamaModels.Meta.LLAMA_3_2, |
| 142 | + maxAgentIterations = 50 |
| 143 | + ) |
| 144 | + |
| 145 | + val agent = PlannerAIAgent( |
| 146 | + promptExecutor = mockExecutor, |
| 147 | + strategy = strategy, |
| 148 | + agentConfig = agentConfig |
| 149 | + ) |
| 150 | + |
| 151 | + val initialState = PathState() |
| 152 | + val finalState = agent.run(initialState) |
| 153 | + |
| 154 | + assertTrue(finalState.hasItem, "Agent should have obtained the item") |
| 155 | + assertTrue(finalState.goalReached, "Agent should have reached the goal") |
| 156 | + } |
| 157 | + |
| 158 | + // Create a more complex scenario with multiple dependencies |
| 159 | + data class ComplexState( |
| 160 | + val hasWood: Boolean = false, |
| 161 | + val hasStone: Boolean = false, |
| 162 | + val hasAxe: Boolean = false, |
| 163 | + val hasPickaxe: Boolean = false, |
| 164 | + val hasShelter: Boolean = false |
| 165 | + ) |
| 166 | + |
| 167 | + @Test |
| 168 | + fun testGOAPComplexDependencies() = runTest { |
| 169 | + val planner = goap<ComplexState>(typeOf<ComplexState>()) { |
| 170 | + // Gather wood (no prerequisites) |
| 171 | + action( |
| 172 | + name = "Gather wood", |
| 173 | + precondition = { state -> !state.hasWood }, |
| 174 | + belief = { state -> state.copy(hasWood = true) }, |
| 175 | + cost = { 2.0 } |
| 176 | + ) { _, state -> |
| 177 | + state.copy(hasWood = true) |
| 178 | + } |
| 179 | + |
| 180 | + // Gather stone (no prerequisites) |
| 181 | + action( |
| 182 | + name = "Gather stone", |
| 183 | + precondition = { state -> !state.hasStone }, |
| 184 | + belief = { state -> state.copy(hasStone = true) }, |
| 185 | + cost = { 2.0 } |
| 186 | + ) { _, state -> |
| 187 | + state.copy(hasStone = true) |
| 188 | + } |
| 189 | + |
| 190 | + // Craft axe (requires wood and stone) |
| 191 | + action( |
| 192 | + name = "Craft axe", |
| 193 | + precondition = { state -> state.hasWood && state.hasStone && !state.hasAxe }, |
| 194 | + belief = { state -> state.copy(hasAxe = true) }, |
| 195 | + cost = { 1.0 } |
| 196 | + ) { _, state -> |
| 197 | + state.copy(hasAxe = true) |
| 198 | + } |
| 199 | + |
| 200 | + // Craft pickaxe (requires wood and stone) |
| 201 | + action( |
| 202 | + name = "Craft pickaxe", |
| 203 | + precondition = { state -> state.hasWood && state.hasStone && !state.hasPickaxe }, |
| 204 | + belief = { state -> state.copy(hasPickaxe = true) }, |
| 205 | + cost = { 1.0 } |
| 206 | + ) { _, state -> |
| 207 | + state.copy(hasPickaxe = true) |
| 208 | + } |
| 209 | + |
| 210 | + // Build shelter (requires axe and pickaxe) |
| 211 | + action( |
| 212 | + name = "Build shelter", |
| 213 | + precondition = { state -> |
| 214 | + state.hasAxe && state.hasPickaxe && !state.hasShelter |
| 215 | + }, |
| 216 | + belief = { state -> state.copy(hasShelter = true) }, |
| 217 | + cost = { 3.0 } |
| 218 | + ) { _, state -> |
| 219 | + state.copy(hasShelter = true) |
| 220 | + } |
| 221 | + |
| 222 | + goal( |
| 223 | + name = "Build shelter", |
| 224 | + condition = { state -> state.hasShelter } |
| 225 | + ) |
| 226 | + } |
| 227 | + |
| 228 | + val strategy = AIAgentPlannerStrategy("goap-complex-test", planner) |
| 229 | + val mockExecutor = getMockExecutor { |
| 230 | + mockLLMAnswer("OK").asDefaultResponse |
| 231 | + } |
| 232 | + |
| 233 | + val agentConfig = AIAgentConfig( |
| 234 | + prompt = prompt("goap") { system("GOAP agent") }, |
| 235 | + model = OllamaModels.Meta.LLAMA_3_2, |
| 236 | + maxAgentIterations = 50 |
| 237 | + ) |
| 238 | + |
| 239 | + val agent = PlannerAIAgent( |
| 240 | + promptExecutor = mockExecutor, |
| 241 | + strategy = strategy, |
| 242 | + agentConfig = agentConfig |
| 243 | + ) |
| 244 | + |
| 245 | + val initialState = ComplexState() |
| 246 | + val finalState = agent.run(initialState) |
| 247 | + |
| 248 | + assertTrue(finalState.hasWood, "Agent should have gathered wood") |
| 249 | + assertTrue(finalState.hasStone, "Agent should have gathered stone") |
| 250 | + assertTrue(finalState.hasAxe, "Agent should have crafted an axe") |
| 251 | + assertTrue(finalState.hasPickaxe, "Agent should have crafted a pickaxe") |
| 252 | + assertTrue(finalState.hasShelter, "Agent should have built the shelter") |
| 253 | + } |
| 254 | +} |
0 commit comments