|
| 1 | +package ai.koog.agents.memory.feature |
| 2 | + |
| 3 | +import ai.koog.rag.vector.database.HybridSearchRequest |
| 4 | +import ai.koog.rag.vector.database.KeywordSearchRequest |
| 5 | +import ai.koog.rag.vector.database.MemoryRecord |
| 6 | +import ai.koog.rag.vector.database.MemoryRecordRepository |
| 7 | +import ai.koog.rag.vector.database.ScoredMemoryRecord |
| 8 | +import ai.koog.rag.vector.database.SimilaritySearchRequest |
| 9 | +import kotlin.jvm.JvmStatic |
| 10 | + |
| 11 | +/** |
| 12 | + * Retriever of memory records during prompt augmentation. |
| 13 | + * |
| 14 | + * This is a functional interface (SAM) that can be implemented as a lambda |
| 15 | + * in both Kotlin and Java. It provides flexibility in how memory searches |
| 16 | + * are performed while maintaining type safety. |
| 17 | + * |
| 18 | + * Pre-built implementations are available for common search types: |
| 19 | + * - [SimilarityRecordRetriever] - Vector similarity search (semantic search) |
| 20 | + * - [KeywordRecordRetriever] - Full-text/keyword search |
| 21 | + * - [HybridRecordRetriever] - Combined vector and keyword search |
| 22 | + * |
| 23 | + * ### Usage Examples |
| 24 | + * |
| 25 | + * **Using pre-built retrievers (Kotlin):** |
| 26 | + * ```kotlin |
| 27 | + * // Similarity search with default parameters |
| 28 | + * val retriever = MemoryRecordRetriever.similarity() |
| 29 | + * |
| 30 | + * // Keyword search with custom topK |
| 31 | + * val keywordRetriever = MemoryRecordRetriever.keyword(topK = 5) |
| 32 | + * |
| 33 | + * // Hybrid search with custom alpha (balance between vector and keyword) |
| 34 | + * val hybridRetriever = MemoryRecordRetriever.hybrid( |
| 35 | + * topK = 10, |
| 36 | + * similarityThreshold = 0.7, |
| 37 | + * alpha = 0.6 |
| 38 | + * ) |
| 39 | + * ``` |
| 40 | + * |
| 41 | + * **Custom implementation as lambda (Kotlin):** |
| 42 | + * ```kotlin |
| 43 | + * val customRetriever = MemoryRecordRetriever { repository, query -> |
| 44 | + * repository.search(SimilaritySearchRequest( |
| 45 | + * query = query, |
| 46 | + * topK = 5, |
| 47 | + * similarityThreshold = 0.8 |
| 48 | + * )) |
| 49 | + * } |
| 50 | + * ``` |
| 51 | + * |
| 52 | + * **Using pre-built retrievers (Java):** |
| 53 | + * ```java |
| 54 | + * // Similarity search with default parameters |
| 55 | + * MemoryRecordRetriever retriever = MemoryRecordRetriever.similarity(); |
| 56 | + * |
| 57 | + * // Keyword search with custom topK |
| 58 | + * MemoryRecordRetriever keywordRetriever = MemoryRecordRetriever.keyword(5, 0.0, null); |
| 59 | + * |
| 60 | + * // Hybrid search with custom parameters |
| 61 | + * MemoryRecordRetriever hybridRetriever = MemoryRecordRetriever.hybrid(10, 0.7, 0.6, null); |
| 62 | + * ``` |
| 63 | + * |
| 64 | + * **Custom implementation as lambda (Java):** |
| 65 | + * ```java |
| 66 | + * MemoryRecordRetriever customRetriever = (repository, query) -> |
| 67 | + * repository.search(new SimilaritySearchRequest(query, 5, 0.8, null)); |
| 68 | + * ``` |
| 69 | + */ |
| 70 | +public fun interface MemoryRecordRetriever { |
| 71 | + /** |
| 72 | + * Searches the repository for relevant memory records. |
| 73 | + * |
| 74 | + * @param repository The memory record repository to search |
| 75 | + * @param query The user's query string (typically the last user message content) |
| 76 | + * @return List of scored memory records, sorted by relevance |
| 77 | + */ |
| 78 | + public suspend fun retrieve( |
| 79 | + repository: MemoryRecordRepository, |
| 80 | + query: String |
| 81 | + ): List<ScoredMemoryRecord<MemoryRecord>> |
| 82 | + |
| 83 | + /** |
| 84 | + * Pre-defined retrievers. |
| 85 | + */ |
| 86 | + public companion object { |
| 87 | + /** |
| 88 | + * Creates a similarity search mode with the given parameters. |
| 89 | + * Uses vector similarity (semantic) search. |
| 90 | + * |
| 91 | + * @param topK Maximum number of results to return |
| 92 | + * @param similarityThreshold Minimum similarity score (0.0 to 1.0) |
| 93 | + * @param filterExpression Optional metadata filter expression |
| 94 | + * @return A configured similarity search mode |
| 95 | + */ |
| 96 | + @JvmStatic |
| 97 | + public fun similarity( |
| 98 | + topK: Int = 10, |
| 99 | + similarityThreshold: Double = 0.0, |
| 100 | + filterExpression: String? = null |
| 101 | + ): MemoryRecordRetriever = SimilarityRecordRetriever(topK, similarityThreshold, filterExpression) |
| 102 | + |
| 103 | + /** |
| 104 | + * Creates a keyword search mode with the given parameters. |
| 105 | + * Uses full-text/keyword matching. |
| 106 | + * |
| 107 | + * @param topK Maximum number of results to return |
| 108 | + * @param similarityThreshold Minimum similarity score (0.0 to 1.0) |
| 109 | + * @param filterExpression Optional metadata filter expression |
| 110 | + * @return A configured keyword search mode |
| 111 | + */ |
| 112 | + @JvmStatic |
| 113 | + public fun keyword( |
| 114 | + topK: Int = 10, |
| 115 | + similarityThreshold: Double = 0.0, |
| 116 | + filterExpression: String? = null |
| 117 | + ): MemoryRecordRetriever = KeywordRecordRetriever(topK, similarityThreshold, filterExpression) |
| 118 | + |
| 119 | + /** |
| 120 | + * Creates a hybrid search mode with the given parameters. |
| 121 | + * Combines vector similarity and keyword search. |
| 122 | + * |
| 123 | + * @param topK Maximum number of results to return |
| 124 | + * @param similarityThreshold Minimum similarity score (0.0 to 1.0) |
| 125 | + * @param alpha Balance between vector (0.0) and keyword (1.0) search. Default 0.5 for equal weight. |
| 126 | + * @param filterExpression Optional metadata filter expression |
| 127 | + * @return A configured hybrid search mode |
| 128 | + */ |
| 129 | + @JvmStatic |
| 130 | + public fun hybrid( |
| 131 | + topK: Int = 10, |
| 132 | + similarityThreshold: Double = 0.0, |
| 133 | + alpha: Double = 0.5, |
| 134 | + filterExpression: String? = null |
| 135 | + ): MemoryRecordRetriever = HybridRecordRetriever(topK, similarityThreshold, alpha, filterExpression) |
| 136 | + } |
| 137 | +} |
| 138 | + |
| 139 | +/** |
| 140 | + * Similarity search mode using vector embeddings for semantic search. |
| 141 | + * |
| 142 | + * This mode converts the query to a vector embedding and finds records |
| 143 | + * with similar embeddings in the vector store. |
| 144 | + * |
| 145 | + * @property topK Maximum number of results to return |
| 146 | + * @property similarityThreshold Minimum similarity score (0.0 to 1.0) |
| 147 | + * @property filterExpression Optional metadata filter expression for pre-filtering |
| 148 | + */ |
| 149 | +public class SimilarityRecordRetriever( |
| 150 | + public val topK: Int = 10, |
| 151 | + public val similarityThreshold: Double = 0.0, |
| 152 | + public val filterExpression: String? = null |
| 153 | +) : MemoryRecordRetriever { |
| 154 | + override suspend fun retrieve( |
| 155 | + repository: MemoryRecordRepository, |
| 156 | + query: String |
| 157 | + ): List<ScoredMemoryRecord<MemoryRecord>> = |
| 158 | + repository.search(SimilaritySearchRequest(query, topK, similarityThreshold, filterExpression)) |
| 159 | +} |
| 160 | + |
| 161 | +/** |
| 162 | + * Keyword search mode using full-text/lexical matching. |
| 163 | + * |
| 164 | + * This mode uses traditional text matching instead of vector similarity, |
| 165 | + * which can be useful for exact term matching or when semantic search |
| 166 | + * is not needed. |
| 167 | + * |
| 168 | + * @property topK Maximum number of results to return |
| 169 | + * @property similarityThreshold Minimum similarity score (0.0 to 1.0) |
| 170 | + * @property filterExpression Optional metadata filter expression for pre-filtering |
| 171 | + */ |
| 172 | +public class KeywordRecordRetriever( |
| 173 | + public val topK: Int = 10, |
| 174 | + public val similarityThreshold: Double = 0.0, |
| 175 | + public val filterExpression: String? = null |
| 176 | +) : MemoryRecordRetriever { |
| 177 | + override suspend fun retrieve( |
| 178 | + repository: MemoryRecordRepository, |
| 179 | + query: String |
| 180 | + ): List<ScoredMemoryRecord<MemoryRecord>> = |
| 181 | + repository.search(KeywordSearchRequest(query, topK, similarityThreshold, filterExpression)) |
| 182 | +} |
| 183 | + |
| 184 | +/** |
| 185 | + * Hybrid search mode combining vector similarity and keyword search. |
| 186 | + * |
| 187 | + * This mode balances semantic understanding (vector search) with exact |
| 188 | + * term matching (keyword search), often providing better results than |
| 189 | + * either approach alone. |
| 190 | + * |
| 191 | + * @property topK Maximum number of results to return |
| 192 | + * @property similarityThreshold Minimum similarity score (0.0 to 1.0) |
| 193 | + * @property alpha Balance between vector (0.0) and keyword (1.0) search. Default 0.5 for equal weight. |
| 194 | + * @property filterExpression Optional metadata filter expression for pre-filtering |
| 195 | + */ |
| 196 | +public class HybridRecordRetriever( |
| 197 | + public val topK: Int = 10, |
| 198 | + public val similarityThreshold: Double = 0.0, |
| 199 | + public val alpha: Double = 0.5, |
| 200 | + public val filterExpression: String? = null |
| 201 | +) : MemoryRecordRetriever { |
| 202 | + init { |
| 203 | + require(alpha in 0.0..1.0) { "Alpha must be between 0.0 and 1.0, got $alpha" } |
| 204 | + } |
| 205 | + |
| 206 | + override suspend fun retrieve( |
| 207 | + repository: MemoryRecordRepository, |
| 208 | + query: String |
| 209 | + ): List<ScoredMemoryRecord<MemoryRecord>> = |
| 210 | + repository.search(HybridSearchRequest(query, null, alpha, topK, similarityThreshold, filterExpression)) |
| 211 | +} |
0 commit comments