-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphy10_4.html
191 lines (175 loc) · 7.54 KB
/
phy10_4.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Static and Current Electricity</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
background-color: #f4f4f4;
}
header {
background-color: #2C3E50;
color: white;
text-align: center;
padding: 20px;
}
footer {
background-color: #2C3E50;
color: white;
text-align: center;
padding: 10px;
position: fixed;
bottom: 0;
width: 100%;
}
h1, h2 {
color: #2C3E50;
}
p, ul {
font-size: 16px;
color: #34495E;
}
ul {
list-style-type: square;
}
.formula {
font-family: "Courier New", Courier, monospace;
background-color: #e9e9e9;
padding: 5px;
border-radius: 5px;
}
.key-formulas {
background-color: #ecf0f1;
padding: 10px;
border-radius: 5px;
margin-top: 20px;
}
.key-formulas ul {
padding-left: 20px;
}
</style>
</head>
<body>
<header>
<h1>Static and Current Electricity</h1>
</header>
<div class="content">
<h1>Static Electricity</h1>
<p><strong>Static electricity</strong> refers to the buildup of electric charge on the surface of objects. It occurs when electrons are transferred between materials, typically through friction. The charges accumulate and remain on the object until they are discharged.</p>
<h2>Key Concepts:</h2>
<ul>
<li><strong>Charge</strong>: A property of matter that causes it to experience a force when placed in an electric and magnetic field. There are two types of charge: positive and negative.</li>
<ul>
<li><strong>Positive Charge</strong>: Results from a deficit of electrons.</li>
<li><strong>Negative Charge</strong>: Results from an excess of electrons.</li>
</ul>
<li><strong>Coulomb’s Law</strong>: Describes the force between two point charges.</li>
</ul>
<p class="formula">F = k<sub>e</sub> q<sub>1</sub> q<sub>2</sub> / r<sup>2</sup></p>
<p>Where:</p>
<ul>
<li>F = force between two charges (in Newtons)</li>
<li>q<sub>1</sub>, q<sub>2</sub> = magnitudes of the two charges (in Coulombs)</li>
<li>r = distance between the charges (in meters)</li>
<li>k<sub>e</sub> = Coulomb’s constant (8.99 × 10<sup>9</sup> N⋅m<sup>2</sup> / C<sup>2</sup>)</li>
</ul>
<h2>Electric Fields:</h2>
<p>An <strong>electric field</strong> is a field around a charged particle that exerts a force on other charged particles.</p>
<p class="formula">E = F / q</p>
<p>Where:</p>
<ul>
<li>E = electric field (in Newtons per Coulomb, N/C)</li>
<li>F = force experienced by a test charge (in Newtons)</li>
<li>q = charge (in Coulombs)</li>
</ul>
<h2>Electric Potential:</h2>
<p>The <strong>electric potential</strong> is the work needed to move a charge from infinity to a point in space. It is related to potential energy per unit charge.</p>
<p class="formula">V = U / q</p>
<p>Where:</p>
<ul>
<li>V = electric potential (in Volts)</li>
<li>U = electric potential energy (in Joules)</li>
<li>q = charge (in Coulombs)</li>
</ul>
<h1>Current Electricity</h1>
<p><strong>Current electricity</strong> deals with the flow of electric charge, typically through conductors like wires. Electric current is the rate of flow of charge.</p>
<h2>Key Concepts:</h2>
<ul>
<li><strong>Electric Current (I)</strong>: The rate of flow of charge.</li>
</ul>
<p class="formula">I = Q / t</p>
<p>Where:</p>
<ul>
<li>I = current (in Amperes, A)</li>
<li>Q = charge (in Coulombs)</li>
<li>t = time (in seconds)</li>
</ul>
<ul>
<li><strong>Voltage (V)</strong>: The potential difference between two points in a circuit. It drives the current to flow.</li>
</ul>
<p class="formula">V = I R</p>
<p>Where:</p>
<ul>
<li>V = voltage (in Volts, V)</li>
<li>I = current (in Amperes)</li>
<li>R = resistance (in Ohms, Ω)</li>
</ul>
<ul>
<li><strong>Ohm’s Law</strong>: Describes the relationship between current, voltage, and resistance.</li>
</ul>
<p class="formula">V = I R</p>
<h2>Resistance:</h2>
<p><strong>Resistance (R)</strong> is the opposition to the flow of current in a conductor. It depends on the material, length, and cross-sectional area of the conductor.</p>
<p class="formula">R = ρ L / A</p>
<p>Where:</p>
<ul>
<li>R = resistance (in Ohms, Ω)</li>
<li>ρ = resistivity (in Ohm-meters)</li>
<li>L = length of the conductor (in meters)</li>
<li>A = cross-sectional area (in square meters)</li>
</ul>
<h2>Power in Electric Circuits:</h2>
<p><strong>Electric Power (P)</strong> is the rate at which electrical energy is consumed or produced.</p>
<p class="formula">P = V I = I<sup>2</sup> R = V<sup>2</sup> / R</p>
<p>Where:</p>
<ul>
<li>P = power (in Watts, W)</li>
<li>V = voltage (in Volts)</li>
<li>I = current (in Amperes)</li>
<li>R = resistance (in Ohms)</li>
</ul>
<h2>Kirchhoff’s Laws:</h2>
<ul>
<li><strong>Kirchhoff’s Current Law (KCL)</strong>: The total current entering a junction equals the total current leaving the junction.</li>
</ul>
<p class="formula">∑ I<sub>in</sub> = ∑ I<sub>out</sub></p>
<ul>
<li><strong>Kirchhoff’s Voltage Law (KVL)</strong>: The sum of all electrical potential differences (voltages) around any closed loop or circuit is zero.</li>
</ul>
<p class="formula">∑ V = 0</p>
<div class="key-formulas">
<h2>Key Formulas Summary:</h2>
<ul>
<li><strong>Coulomb’s Law</strong>: F = k<sub>e</sub> q<sub>1</sub> q<sub>2</sub> / r<sup>2</sup></li>
<li><strong>Electric Field</strong>: E = F / q</li>
<li><strong>Electric Potential</strong>: V = U / q</li>
<li><strong>Current</strong>: I = Q / t</li>
<li><strong>Ohm’s Law</strong>: V = I R</li>
<li><strong>Power</strong>: P = V I, P = I<sup>2</sup> R, P = V<sup>2</sup> / R</li>
<li><strong>Resistance</strong>: R = ρ L / A</li>
</ul>
</div>
<h2>Summary of Static vs. Current Electricity:</h2>
<ul>
<li><strong>Static electricity</strong> involves the accumulation of charges on surfaces and the resulting forces between them.</li>
<li><strong>Current electricity</strong> deals with the flow of charges through conductors and the associated electrical circuits.</li>
</ul>
</div>
<footer>
<p style="color: white;">© 2025 Yoseph Feyisa Wegi | All Rights Reserved.</p>
</footer>
</body>
</html>