-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyfunctions.py
337 lines (292 loc) · 10.8 KB
/
myfunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from __future__ import print_function
import re
import sys
import math
import os
import numpy as np
import openpyxl
#import statsmodels.api as sm # recommended import according to the docs
#import pandas as pandas
#Printing with interpolation
def p(my_string):
print(my_string.format(**globals()),end="",sep="")
#String interpolation
#def i(my_string):
# return ({my_string}.format(**globals()))
def chomp(L):
L=L.rstrip()
return L
#Split a string based on the seperator
#e.g v=split(L,"\t")
#will split L based on tabs
def split(L,sep):
v=L.split(sep)
return v
#Join an array to a string
def sjoin (v,sep):
v_s=sep.v.join()
return(v_s)
#Substitue part of a string for another (i.e. string replacement)
#a[4]=s(a[4],".pdb","")
#will replae ".pdb" with nothing
#*args can contain an optional argument, which is how many maximum do you want to replace
#e.g. L=s(L,"\t","-",1); will substitue the first occurance only of tab
def s(L,string,substitute,*args):
L=str.replace(L,string,substitute,*args);
return L
#Printing with interpolation
#e.g. p("{v[0]}\t{v[1]}\t{v[0]}\\n")
#Note that for this function all variables must have braces ({}) around them (e.g. {v[1]}). Also new line must be "\\n", not "\n"
def p(my_string):
my_string=my_string.format(**globals())
print(my_string,end="",sep="")
#get rownames of data frame
def rownames(data_frame):
returnlist(data_frame.index)
#import modules/functions from a file
def source (file_1):
exec(open(file_1).read())
return
#get the intersection between two lists
def intersection(list_1,list_2):
return(list(set(list_1) & set(list_2)))
#given two lists, return the members of the first list not in the second list
def setdiff(list_1,list_2):
return(list(set(list_1)-set(list_2)))
#assign names to a list in an R sort of fashion (named lists)
def names(list,names):
return(pandas.Series(list_1,index=list_2))
#Does the variable exist? returns 1 if yes and 0 if not
def exists(var):
output=1
try:
var
except NameError:
output=0
#is the variable equal to None, not the same as doe not exist
def isnone(var):
output=0
if not var:
output=1
return(output)
#def shift(list_1):
# list_1.pop[0]
# return(list_1)
#translate lowercase to upercase
def lowerupper (string_1):
trantab = maketrans("abcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
return(string_1.translate(trantab))
#translate lowercase to upercase
def upperlower (string_1):
trantab = maketrans("abcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
return(string_1.translate(trantab))
#retrun a numeric vector
def as_numeric (list_1):
list_1 = list(map(int, list_1))
return(list_1)
#This function calculates the maximum information gain between a list given a gold standard, It calculates if for all the potential split points and returns split point that gives the maximum information.
#list 1 is a namedList where the names are names and the value is the value of each instance
#list 2 is the gold standard (which will be given a label of 1)
def informationGain(list_1,list_2):
#sort the data from heighest to lowest
values=unique(sorted(list_1,reverse=1))
gold_standard_data=intersection(list_1.names,list_2.names)
gold_standard_data=namedList(gold_standard_data)
gold_standard_data.names=gold_standard_data
gold_standard_length=len(gold_standard_data)
dict_1=dict(zip(list_1.names, list_1))
#Get values for gold standard
gold_standard_data.data = itemgetter(*gold_standard_data.names)(dict_1)
negative_set_data=setdiff(list_1.names,gold_standard_data.names)
negative_set_data=namedList(negative_set_data)
negative_set_data.names=negative_set_data
negative_set_data.data=itemgetter(*negative_set_data.names)(dict_1)
gold_standard_length=len(gold_standard_data)
negative_standard_length=len(negative_set_data)
total_length=len(list_1)
negative_set_data_A = np.array(negative_set_data.data)
gold_standard_data_A=np.array(gold_standard_data.data)
information_gain_old=0
information_gain_max=0
split_point=max(values)
#now for each value point, find the information gain
for i in range(len(values)):
neg_up=np.sum(negative_set_data_A >= values[i])
gold_up=np.sum(gold_standard_data_A >= values[i])
total_up=neg_up+gold_up
prob_neg_up=neg_up/total_up
prob_gold_up=gold_up/total_up
#I add a very small to the probabilities to that we are not taking a log of zero
prob_gold_up=prob_gold_up+.000000000001
prob_neg_up=prob_neg_up+.000000000001
prob_gold_down=((gold_standard_length-gold_up)/total_length)+.000000000001
prob_neg_down=((negative_standard_length-neg_up)/total_length)+.000000000001
#prob_gold_down=abs(1-prob_gold_up)
#prob_neg_down=abs(1-prob_neg_up)
my_information_gain=-1*((prob_gold_up*math.log(prob_gold_up,2)+prob_neg_up*math.log(prob_neg_up,2))+ (prob_gold_down*math.log(prob_gold_down,2)+prob_neg_down*math.log(prob_neg_down,2)))
#print(my_information_gain)
if my_information_gain > information_gain_max:
information_gain_max=my_information_gain
split_point=values[i]
#This is the split point that gives the highest information.
split_point_index=i
#you can also modify this to return the split point/index. The split point is the point within the feature that splits to the best information.
#print(split_point)
return(information_gain_max)
#Remove non-unique from list, equivelent to bash uniq
def unique(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
def cd(directory):
os.chdir(directory)
return
#perform a system command
def bash(string_1):
os.system(string_1)
return
#Get ecdf from list
def plot_ecdf (list_1):
ecdf = sm.distributions.ECDF(list_1)
x = np.linspace(min(list_1), max(list_1))
y = ecdf(x)
plt.step(x, y)
plt.show()
#read in dataframe from text file with no header
def readdataframe_noheader(file_1):
df=pandas.read_table(file_1,header=None)
return(df)
#read in dataframe from text file with no header
def readdataframe_header(file_1):
df=pandas.read_table(file_1)
return(df)
#reverse a string, so that "josh" becomes "hsoj"
def reverse_string(string_1):
string_1=string_1[::-1]
return(string_1)
#given a list, remove elements that are comments (ie., start with a "#")
def remove_comment_line(list_1):
list_to_return=[]
for i in list_1:
i=str(i)
m=re.search(r'^\s*#',i)
if m:
continue
list_to_return.append(i)
return(list_to_return)
#aliases
#f is float
f=float
#given an openpyxl excel workbook of a sheet and a column name, (e.g. 'A', return a column as a list
def return_list_from_excel_column(work_sheet,column_letter):
list_to_return=[]
list_1=work_sheet[column_letter]
#print(list_1)
#y=0
for x in range(len(list_1)-1):
#print(x)
list_to_return.append(list_1[x].value)
#y=y+1
return(list_to_return)
# A Dynamic Programming based Python program for edit
# distance problem
# This code is contributed by Bhavya Jain, I got based it on from http://www.geeksforgeeks.org/dynamic-programming-set-5-edit-distance/
def editDistDP(str1, str2):
#str2 (n) is the columns, str1 (m) is the rows
m=len(str1)
n=len(str2)
# Create a table to store results of subproblems
dp = [[0 for x in range(n+1)] for x in range(m+1)]
#print(dp)
# Fill d[][] in bottom up manner
for i in range(m+1):
for j in range(n+1):
# If first string is empty, only option is to
# isnert all characters of second string
if i == 0:
dp[i][j] = j # Min. operations = j
# If second string is empty, only option is to
# remove all characters of second string
elif j == 0:
dp[i][j] = i # Min. operations = i
# If last characters are same, ignore last char
# and recur for remaining string
elif str1[i-1] == str2[j-1]:
dp[i][j] = dp[i-1][j-1]
# If last character are different, consider all
# possibilities and find minimum
else:
dp[i][j] = 1 + min(dp[i][j-1], # Insert
dp[i-1][j], # Remove
dp[i-1][j-1]) # Replace
#print(dp)
list_to_return=[dp[i][j],dp]
return dp[m][n]
#return list_to_return
#return dp
#This is also the edit distance, except that it finds the edit distance of for a local match (i.e. substring)
#In this function:
#x=editDistLocalMatch("josuaboyde","mynameisjoshuabroyde")
#x will equal 2 (i.e. the "h" and "r")
#Note that in this function, str1 must be shorter than str2
def editDistLocalMatch(str1, str2):
#str2 (n) is the columns, str1 (m) is the rows
m=len(str1)
n=len(str2)
# Create a table to store results of subproblems
dp = [[0 for x in range(n+1)] for x in range(m+1)]
#print(dp)
# Fill d[][] in bottom up manner
for i in range(m+1):
for j in range(n+1):
# If first string is empty, only option is to
# isnert all characters of second string
if i == 0:
dp[i][j]=0 #jb added initializes the
# If second string is empty, only option is to
# remove all characters of second string
elif j == 0:
dp[i][j] = i # Min. operations = i
# If last characters are same, ignore last char
# and recur for remaining string
elif str1[i-1] == str2[j-1]:
dp[i][j] = dp[i-1][j-1]
# If last character are different, consider all
# possibilities and find minimum
else:
dp[i][j] = 1 + min(dp[i][j-1], # Insert
dp[i-1][j], # Remove
dp[i-1][j-1]) # Replace
#print(dp)
#list_to_return=[dp[i][j],dp]
return min(dp[m])
#return list_to_return
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')