@@ -352,10 +352,10 @@ def fit_mu_t(
352352 "segment" : numpy .arange (TS ),
353353 }
354354 with pm .Model (coords = coords ) as pmodel :
355- pm .ConstantData ("known_switchpoints" , t_switchpoints_known )
356- pm .ConstantData ("t_data" , t_data , dims = "timepoint" )
357- pm .ConstantData ("t_segments" , t_segments , dims = "segment" )
358- dt = pm .ConstantData ("dt" , numpy .diff (t_data ), dims = "segment" )
355+ pm .Data ("known_switchpoints" , t_switchpoints_known )
356+ pm .Data ("t_data" , t_data , dims = "timepoint" )
357+ pm .Data ("t_segments" , t_segments , dims = "segment" )
358+ dt = pm .Data ("dt" , numpy .diff (t_data ), dims = "segment" )
359359
360360 # The init dist for the random walk is where each segment starts.
361361 # Here we center it on the user-provided mu_prior,
@@ -428,7 +428,7 @@ def fit_mu_t(
428428 )
429429 calibration_model .loglikelihood (
430430 x = Xt ,
431- y = pm .ConstantData ("backscatter" , y , dims = ("timepoint" ,)),
431+ y = pm .Data ("backscatter" , y , dims = ("timepoint" ,)),
432432 name = f"{ replicate_id } _{ calibration_model .dependent_key } " ,
433433 dims = "timepoint" ,
434434 )
0 commit comments