Releases: Julia-XAI/ExplainableAI.jl
Releases · Julia-XAI/ExplainableAI.jl
v0.6.0
ExplainableAI v0.6.0
Closed issues:
- Add LRP support for
Parallel
layer (#10) - Document use of LoopVectorization.jl and CUDA.jl (#64)
- Add LRP support for nested Chains (#90)
- Add generalized Gamma rule (#91)
- Rename composite primitives (#120)
- Add composite primitive to assign rule at specific position in model (#121)
- Support
BatchNorm
layers in LRP (#122) - Refactor results struct (#123)
- Add Aqua.jl tests (#124)
- Update canonizer to support nested Flux Chains (#132)
- Update documentation for
v0.6.0
release (#133)
Merged pull requests:
- Add
GeneralizedGammaRule
(#109) (@adrhill) - Simplify LRP analyzer and clean-up rule default parameters (#110) (@adrhill)
- Simplify LRP model checks (#112) (@adrhill)
- Update dependencies (#116) (@adrhill)
- Bump actions/cache from 1 to 3 (#117) (@dependabot[bot])
- Bump actions/checkout from 2 to 3 (#118) (@dependabot[bot])
- Support nested Flux Chains in LRP (#119) (@adrhill)
- Add Aqua.jl tests (#125) (@adrhill)
- Refactor
Explanation
struct (#126) (@adrhill) - Faster tests and benchmarks (#127) (@adrhill)
- Set LRP output relevance to one (#128) (@adrhill)
- Enable
BatchNorm
layers in LRP (#129) (@adrhill) - Rename composite primitives (#130) (@adrhill)
- Support nested indexing in composite primitive
LayerMap
(#131) (@adrhill) - Add
PassRule
on normalization layers to composite presets, improveshow
(#134) (@adrhill) - Support
Parallel
layers in LRP (#135) (@adrhill) - Rename
Explanation
fieldattribution
toval
(#136) (@adrhill) - Update documentation for
v0.6.0
(#137) (@adrhill) - Support canonization of
Parallel
layers (#138) (@adrhill)
v0.5.7
ExplainableAI v0.5.7
Merged pull requests:
- CompatHelper: bump compat for PrettyTables to 2, (keep existing compat) (#101) (@github-actions[bot])
v0.5.6
ExplainableAI v0.5.6
Merged pull requests:
v0.5.5
v0.5.4
ExplainableAI v0.5.4
Closed issues:
- Add printing of LRP analyzers, showing layers and rules (#83)
Merged pull requests:
v0.5.3
v0.5.2
ExplainableAI v0.5.2
Closed issues:
- Use CIFAR10 examples instead of MNIST (#49)
Merged pull requests:
v0.5.1
ExplainableAI v0.5.1
v0.5.0
ExplainableAI v0.5.0
Closed issues:
- Add passthrough rule (#60)
- Apply LRP rules via VJP with gradient mapper (#62)
- Refactor gradient methods to make use of VJPs (#68)
Merged pull requests:
- Replace LRP gradient computation with VJP using
Zygote.pullback
(#72) (@adrhill) - In-place modify layers and rewrite
ZBoxRule
to use VJP (#73) (@adrhill) - Fix broadcasting for Julia 1.6 (#74) (@adrhill)
- Add compatibility checks for LRP rule & layer combinations (#75) (@adrhill)
- Add
PassRule
(#76) (@adrhill) - Fix bug in
ZBoxRule
(#77) (@adrhill) - Add
AlphaBetaRule
(#78) (@adrhill)
v0.4.0
ExplainableAI v0.4.0
Closed issues:
- Reduce allocations in LRP methods (#19)
- Add Integrated Gradients analyzer (#54)
- Remove use of
mapreduce
(#55) - Simplify heatmapping normalizer using ColorSchemes
v3.18
(#56) - Specify upper and lower bounds of input in ZBoxRule constructor (#61)
Merged pull requests:
- Update heatmapping normalizer (#57) (@adrhill)
- Remove use of
mapreduce
(#58) (@adrhill) - Add Integrated Gradients analyzer (#65) (@adrhill)
- Add LoopVectorization.jl to tests and benchmarks to speed up Tullio (#66) (@adrhill)
- Run LRP rule tests on batches (#67) (@adrhill)
- Fix
ZBoxRule
(#69) (@adrhill) - Refactor
lrp!
(#70) (@adrhill)