Skip to content

Commit c5dd3ab

Browse files
authored
Merge pull request #8 from JuliaAI/docfix
Swap out MLUtils.jl for MLCore.jl
2 parents 5f15cae + 3567d91 commit c5dd3ab

File tree

7 files changed

+22
-22
lines changed

7 files changed

+22
-22
lines changed

Project.toml

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,15 @@
11
name = "LearnTestAPI"
22
uuid = "3111ed91-c4f2-40e7-bb19-7f6c618409b8"
33
authors = ["Anthony D. Blaom <[email protected]>"]
4-
version = "0.2.0"
4+
version = "0.2.1"
55

66
[deps]
77
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
88
InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
99
IsURL = "ceb4388c-583f-448d-bb30-00b11e8c5682"
1010
LearnAPI = "92ad9a40-7767-427a-9ee6-6e577f1266cb"
1111
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
12-
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
12+
MLCore = "c2834f40-e789-41da-a90e-33b280584a8c"
1313
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
1414
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
1515
ScientificTypes = "321657f4-b219-11e9-178b-2701a2544e81"
@@ -27,7 +27,7 @@ InteractiveUtils = "<0.0.1, 1"
2727
IsURL = "0.2.0"
2828
LearnAPI = "0.2.0"
2929
LinearAlgebra = "<0.0.1, 1"
30-
MLUtils = "0.4"
30+
MLCore = "1.0.0"
3131
MacroTools = "0.5"
3232
Random = "<0.0.1, 1"
3333
ScientificTypes = "3.0.2"

src/LearnTestAPI.jl

+1-1
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ module LearnTestAPI
3030
using LearnAPI
3131
import Test
3232
import Serialization
33-
import MLUtils
33+
import MLCore
3434
import StableRNGs
3535
import InteractiveUtils
3636
import MacroTools

src/learners/ensembling.jl

+5-5
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ function LearnAPI.fit(learner::Ensemble, data; verbosity=1)
7676
rng = deepcopy(learner.rng) # to prevent mutation of `learner`!
7777
n = learner.n
7878

79-
# ensure data can be subsampled using MLUtils.jl, and that we're feeding the atomic
79+
# ensure data can be subsampled using MLCore.jl, and that we're feeding the atomic
8080
# `fit` data in an efficient (pre-processed) form:
8181

8282
observations = obs(atom, data)
@@ -85,12 +85,12 @@ function LearnAPI.fit(learner::Ensemble, data; verbosity=1)
8585
models = []
8686

8787
# get number of observations:
88-
N = MLUtils.numobs(observations)
88+
N = MLCore.numobs(observations)
8989

9090
# train the ensemble:
9191
for _ in 1:n
9292
bag = rand(rng, 1:N, N)
93-
data_subset = MLUtils.getobs(observations, bag)
93+
data_subset = MLCore.getobs(observations, bag)
9494
# step down one verbosity level in atomic fit:
9595
model = fit(atom, data_subset; verbosity=verbosity - 1)
9696
push!(models, model)
@@ -125,7 +125,7 @@ function LearnAPI.update(
125125

126126
atom = learner.atom
127127
observations = obs(atom, data)
128-
N = MLUtils.numobs(observations)
128+
N = MLCore.numobs(observations)
129129

130130
# initialize:
131131
models = model.models
@@ -134,7 +134,7 @@ function LearnAPI.update(
134134
# add new regressors to the ensemble:
135135
for _ in 1:Δn
136136
bag = rand(rng, 1:N, N)
137-
data_subset = MLUtils.getobs(observations, bag)
137+
data_subset = MLCore.getobs(observations, bag)
138138
model = fit(atom, data_subset; verbosity=verbosity-1)
139139
push!(models, model)
140140
end

src/logging.jl

+2-2
Original file line numberDiff line numberDiff line change
@@ -211,7 +211,7 @@ const SELECTED_FOR_FIT = """
211211
Testing that we can select all observations from `_data = LearnAPI.obs(learner,
212212
data)`, using the interface declared by `LearnAPI.data_interface(learner)`. For
213213
example, if this interface is `LearnAPI.RandomAccess()`, the attempted selection is
214-
`data3 = MLUtils.getobs(_data, 1:MLUtils.numobs(_data))`. For this interface, also
214+
`data3 = MLCore.getobs(_data, 1:MLCore.numobs(_data))`. For this interface, also
215215
testing that we can call `fit` on the selection, obtaining a new `fit` result
216216
`model3`.
217217
@@ -221,7 +221,7 @@ const SELECTED = """
221221
Testing that we can select all observations from `_X = LearnAPI.obs(model, X)`,
222222
using the interface declared by `LearnAPI.data_interface(learner)`. For example, if
223223
this interface is `LearnAPI.RandomAccess()`, the attempted selection is
224-
`X3 = MLUtils.getobs(_X, 1:MLUtils.numobs(_X))`.
224+
`X3 = MLCore.getobs(_X, 1:MLCore.numobs(_X))`.
225225
226226
"""
227227
const PREDICT_ON_SELECTIONS1 = """

src/testapi.jl

+2-2
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ The following are *not* tested:
4848
- The veracity of `LearnAPI.is_pure_julia(learner)`.
4949
5050
- The second of the two contracts appearing in the
51-
[`LearnAPI.target_observation_scitype`](@extref) docstring. The first contract is only
51+
[`LearnAPI.target_observation_scitype`](@ref) docstring. The first contract is only
5252
tested if `LearnAPI.data_interface(learner)` is `LearnAPI.RandomAccess()` or
5353
`LearnAPI.FiniteIterable()`.
5454
@@ -78,7 +78,7 @@ macro testapi(learner, data...)
7878
quote
7979
import LearnTestAPI.Test
8080
import LearnTestAPI.Serialization
81-
import LearnTestAPI.MLUtils
81+
import LearnTestAPI.MLCore
8282
import LearnTestAPI.LearnAPI
8383
import LearnTestAPI.InteractiveUtils
8484
import LearnTestAPI: @logged_testset, @nearly

src/tools.jl

+2-2
Original file line numberDiff line numberDiff line change
@@ -62,8 +62,8 @@ const ERR_BAD_LENGTH = ErrorException(
6262

6363
function get(learner_or_model, data, ::LearnAPI.RandomAccess, apply)
6464
observations = LearnAPI.obs(learner_or_model, data) |> apply
65-
n = MLUtils.numobs(observations)
66-
return MLUtils.getobs(observations, 1:n)
65+
n = MLCore.numobs(observations)
66+
return MLCore.getobs(observations, 1:n)
6767
end
6868
function get(learner_or_model, data, ::LearnAPI.FiniteIterable, apply)
6969
observations = LearnAPI.obs(learner_or_model, data)|> apply

test/learners/regression.jl

+7-7
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@ using Test
22
using LearnAPI
33
using LinearAlgebra
44
using Tables
5-
import MLUtils
5+
import MLCore
66
import DataFrames
77
using LearnTestAPI
88

@@ -55,9 +55,9 @@ learner = LearnTestAPI.Ridge(lambda=0.5)
5555

5656
fitobs = LearnAPI.obs(learner, data)
5757
predictobs = LearnAPI.obs(model, X)
58-
model = fit(learner, MLUtils.getobs(fitobs, train); verbosity=0)
58+
model = fit(learner, MLCore.getobs(fitobs, train); verbosity=0)
5959
@test LearnAPI.target(learner, fitobs) == y
60-
@test predict(model, Point(), MLUtils.getobs(predictobs, test))
60+
@test predict(model, Point(), MLCore.getobs(predictobs, test))
6161
@test predict(model, LearnAPI.features(learner, fitobs)) predict(model, X)
6262

6363
@test LearnAPI.feature_importances(model) isa Vector{<:Pair{Symbol}}
@@ -73,7 +73,7 @@ learner = LearnTestAPI.Ridge(lambda=0.5)
7373
@test predict(
7474
recovered_model,
7575
Point(),
76-
MLUtils.getobs(predictobs, test)
76+
MLCore.getobs(predictobs, test)
7777
)
7878

7979
end
@@ -91,9 +91,9 @@ learner = LearnTestAPI.BabyRidge(lambda=0.5)
9191

9292
fitobs = obs(learner, data)
9393
predictobs = LearnAPI.obs(model, X)
94-
model = fit(learner, MLUtils.getobs(fitobs, train); verbosity=0)
95-
@test predict(model, Point(), MLUtils.getobs(predictobs, test)) ====
96-
predict(model, MLUtils.getobs(predictobs, test))
94+
model = fit(learner, MLCore.getobs(fitobs, train); verbosity=0)
95+
@test predict(model, Point(), MLCore.getobs(predictobs, test)) ====
96+
predict(model, MLCore.getobs(predictobs, test))
9797
@test LearnAPI.target(learner, data) == y
9898
@test LearnAPI.predict(model, X)
9999
LearnAPI.predict(model, LearnAPI.features(learner, data))

0 commit comments

Comments
 (0)