-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdifferentiate_with.jl
48 lines (40 loc) · 1.49 KB
/
differentiate_with.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
@is_primitive MinimalCtx Tuple{DI.DifferentiateWith,<:Union{Number,AbstractArray}}
function Mooncake.rrule!!(dw::CoDual{<:DI.DifferentiateWith}, x::CoDual{<:Number})
primal_func = primal(dw)
primal_x = primal(x)
(; f, backend) = primal_func
y = zero_fcodual(f(primal_x))
# output is a vector, so we need to use the vector pullback
function pullback!!(dy::NoRData)
tx = DI.pullback(f, backend, primal_x, (fdata(y.dx),))
return NoRData(), only(tx)
end
# output is a scalar, so we can use the scalar pullback
function pullback!!(dy::Number)
tx = DI.pullback(f, backend, primal_x, (dy,))
return NoRData(), only(tx)
end
return y, pullback!!
end
function Mooncake.rrule!!(dw::CoDual{<:DI.DifferentiateWith}, x::CoDual{<:AbstractArray})
primal_func = primal(dw)
primal_x = primal(x)
fdata_arg = fdata(x.dx)
(; f, backend) = primal_func
y = zero_fcodual(f(primal_x))
# in case x is mutated in f calls
cp_primal_x = copy(primal_x)
# output is a vector, so we need to use the vector pullback
function pullback!!(dy::NoRData)
tx = DI.pullback(f, backend, cp_primal_x, (fdata(y.dx),))
fdata_arg .+= only(tx)
return NoRData(), dy
end
# output is a scalar, so we can use the scalar pullback
function pullback!!(dy::Number)
tx = DI.pullback(f, backend, cp_primal_x, (dy,))
fdata_arg .+= only(tx)
return NoRData(), NoRData()
end
return y, pullback!!
end