Skip to content

MethodError on length(::DiffResults.ImmutableDiffResult{1, Float64, Tuple{Float64}}) #265

Open
@penelopeysm

Description

@penelopeysm

Hello, here to report another possible bug found upstream in Turing. In the following example, f differentiates just fine but g doesn't.

import ReverseDiff

f(x) = exp.(x[])
f([1.0])
ReverseDiff.gradient(f, [1.0])

g(x) = exp.(reshape(vec(x), ()))
g([1.0])
ReverseDiff.gradient(g, [1.0])

Edit: h(x) = exp.(fill(x[], ())) works fine too, but j(x) = exp.(reshape(x, ())) doesn't.

Stack trace

julia> ReverseDiff.gradient(g, [1.0])
ERROR: MethodError: no method matching length(::DiffResults.ImmutableDiffResult{1, Float64, Tuple{Float64}})
The function `length` exists, but no method is defined for this combination of argument types.

Closest candidates are:
  length(::Cmd)
   @ Base process.jl:716
  length(::Base.MethodSpecializations)
   @ Base reflection.jl:1317
  length(::Core.SimpleVector)
   @ Base essentials.jl:933
  ...

Stacktrace:
  [1] _similar_shape(itr::DiffResults.ImmutableDiffResult{1, Float64, Tuple{Float64}}, ::Base.HasLength)
    @ Base ./array.jl:652
  [2] _collect(cont::UnitRange{…}, itr::DiffResults.ImmutableDiffResult{…}, ::Base.HasEltype, isz::Base.HasLength)
    @ Base ./array.jl:711
  [3] collect(itr::DiffResults.ImmutableDiffResult{1, Float64, Tuple{Float64}})
    @ Base ./array.jl:705
  [4] broadcastable(x::DiffResults.ImmutableDiffResult{1, Float64, Tuple{Float64}})
    @ Base.Broadcast ./broadcast.jl:707
  [5] broadcasted
    @ ./broadcast.jl:1318 [inlined]
  [6] broadcast(f::ReverseDiff.ForwardOptimize{…}, x::ReverseDiff.TrackedArray{…})
    @ ReverseDiff ~/.julia/packages/ReverseDiff/p1MzG/src/derivatives/elementwise.jl:237
  [7] broadcast
    @ ~/.julia/packages/ReverseDiff/p1MzG/src/derivatives/elementwise.jl:198 [inlined]
  [8] _materialize
    @ ~/.julia/packages/ReverseDiff/p1MzG/src/derivatives/broadcast.jl:265 [inlined]
  [9] materialize
    @ ~/.julia/packages/ReverseDiff/p1MzG/src/derivatives/broadcast.jl:273 [inlined]
 [10] g(x::ReverseDiff.TrackedArray{Float64, Float64, 1, Vector{Float64}, Vector{Float64}})
    @ Main ./REPL[6]:1
 [11] ReverseDiff.GradientTape(f::typeof(g), input::Vector{…}, cfg::ReverseDiff.GradientConfig{…})
    @ ReverseDiff ~/.julia/packages/ReverseDiff/p1MzG/src/api/tape.jl:199
 [12] gradient(f::Function, input::Vector{Float64}, cfg::ReverseDiff.GradientConfig{ReverseDiff.TrackedArray{…}})
    @ ReverseDiff ~/.julia/packages/ReverseDiff/p1MzG/src/api/gradients.jl:22
 [13] top-level scope
    @ REPL[8]:1
Some type information was truncated. Use `show(err)` to see complete types.

Version info

(ppl) pkg> st
Status `~/ppl/Project.toml`
  [37e2e3b7] ReverseDiff v1.15.3

julia> versioninfo()
Julia Version 1.11.1
Commit 8f5b7ca12ad (2024-10-16 10:53 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: macOS (arm64-apple-darwin22.4.0)
  CPU: 10 × Apple M1 Pro
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, apple-m1)
Threads: 1 default, 0 interactive, 1 GC (on 8 virtual cores)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions