Skip to content

CuSparseMatrix - CuMatrix multiplication not working: giving Scalar Indexing #2072

@lgravina1997

Description

@lgravina1997

Multiplying a CuSparseMatrixCSC with a CuArray gives Scalar indexing.

To reproduce:

    CUDA.allowscalar(false)
    A  = cu(sparse([1,2,3], [1,2,3], [1,2,3]))
    B  = cu(rand(3,1))
    C = A*B

or

    CUDA.allowscalar(false)
    A  = cu(sparse([1,2,3], [1,2,3], [1,2,3]))
    B  = cu(rand(3,1))
    C = similar(B)
    mul!(C, A, B)

Both give the same problem of course.

Version info

Details on Julia:

Julia Version 1.9.2
Commit e4ee485e909 (2023-07-05 09:39 UTC)
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 20 × 12th Gen Intel(R) Core(TM) i7-12700K
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-14.0.6 (ORCJIT, alderlake)
  Threads: 21 on 20 virtual cores
Environment:
  JULIA_NUM_THREADS = auto
CUDA runtime 12.1, artifact installation
CUDA driver 12.0
NVIDIA driver 525.125.6

CUDA libraries: 
- CUBLAS: 12.1.3
- CURAND: 10.3.2
- CUFFT: 11.0.2
- CUSOLVER: 11.4.5
- CUSPARSE: 12.1.0
- CUPTI: 18.0.0
- NVML: 12.0.0+525.125.6

Julia packages: 
- CUDA: 4.4.1
- CUDA_Driver_jll: 0.5.0+1
- CUDA_Runtime_jll: 0.6.0+0

Toolchain:
- Julia: 1.9.2
- LLVM: 14.0.6
- PTX ISA support: 3.2, 4.0, 4.1, 4.2, 4.3, 5.0, 6.0, 6.1, 6.3, 6.4, 6.5, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5
- Device capability support: sm_37, sm_50, sm_52, sm_53, sm_60, sm_61, sm_62, sm_70, sm_72, sm_75, sm_80, sm_86

1 device:
  0: NVIDIA GeForce RTX 3070 (sm_86, 6.158 GiB [/](https://vscode-remote+ssh-002dremote-002b128-002e178-002e67-002e73.vscode-resource.vscode-cdn.net/) 8.000 GiB available)

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingneeds informationFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions