Skip to content

Add support for rand(rng, n) #578

Open
@CarloLucibello

Description

@CarloLucibello

Currently we have the following error (show for CUDA but the same happens with Metal).

julia> using GPUArrays, CUDA

julia> rng = GPUArrays.default_rng(CuArray);

julia> rand(rng, 5)
ERROR: MethodError: no method matching rng_native_52(::GPUArrays.RNG)
The function `rng_native_52` exists, but no method is defined for this combination of argument types.

Closest candidates are:
  rng_native_52(::Random.MersenneTwister)
   @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/RNGs.jl:439
  rng_native_52(::Random.RandomDevice)
   @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/RNGs.jl:36
  rng_native_52(::Random.TaskLocalRNG)
   @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/Xoshiro.jl:230
  ...

Stacktrace:
  [1] rand(r::GPUArrays.RNG, ::Random.SamplerTrivial{Random.UInt52Raw{UInt64}, UInt64})
    @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/generation.jl:114
  [2] rand(rng::GPUArrays.RNG, X::Random.UInt52Raw{UInt64})
    @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/Random.jl:255
  [3] rand(r::GPUArrays.RNG, ::Random.SamplerTrivial{Random.UInt52{UInt64}, UInt64})
    @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/generation.jl:125
  [4] rand(rng::GPUArrays.RNG, X::Random.UInt52{UInt64})
    @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/Random.jl:255
  [5] rand(r::GPUArrays.RNG, ::Random.SamplerTrivial{Random.CloseOpen12{Float64}, Float64})
    @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/generation.jl:32
  [6] rand(rng::GPUArrays.RNG, X::Random.CloseOpen12{Float64})
    @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/Random.jl:255
  [7] rand(r::GPUArrays.RNG, ::Random.SamplerTrivial{Random.CloseOpen01{Float64}, Float64})
    @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/generation.jl:35
  [8] rand!
    @ ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/Random.jl:273 [inlined]
  [9] rand!
    @ ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/Random.jl:269 [inlined]
 [10] rand
    @ ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/Random.jl:290 [inlined]
 [11] rand(r::GPUArrays.RNG, dims::Int64)
    @ Random ~/.julia/juliaup/julia-1.11.2+0.x64.linux.gnu/share/julia/stdlib/v1.11/Random/src/Random.jl:278
 [12] top-level scope
    @ REPL[17]:1

Is there anything blocking an implementation of rand(rng, n)? Notice that the following works fine instead:

julia> rng = CUDA.default_rng()
CUDA.RNG(0xe8e5e5ff, 0x00000029)

julia> rand(rng, 5)
5-element CuArray{Float32, 1, CUDA.DeviceMemory}:
 0.45878232
 0.55591
 0.1085031
 0.66130507
 0.47421575

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions