-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathruntests.jl
1055 lines (895 loc) · 38.5 KB
/
runtests.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
using FixedPointDecimals
using FixedPointDecimals: FD, value
using Test
using Printf
using Base.Checked: checked_mul
include("utils.jl")
const SFD2 = FixedDecimal{Int16, 2}
const SFD4 = FixedDecimal{Int16, 4}
const FD1 = FixedDecimal{Int, 1}
const FD2 = FixedDecimal{Int, 2}
const FD3 = FixedDecimal{Int, 3}
const FD4 = FixedDecimal{Int, 4}
const WFD2 = FixedDecimal{Int128, 2}
const WFD4 = FixedDecimal{Int128, 4}
const CONTAINER_TYPES = Base.BitInteger_types # Integer concrete subtypes which are bits
# these arrays should be kept sorted manually
const keyvalues = Dict(
FD2 => [typemin(FD2), # near minimum range
FD2(-289.64), # randomly generated
FD2(-1),
FD2(-0.01), # near zero
FD2(0),
FD2(0.01),
FD2(0.14), # fraction-like
FD2(0.33),
FD2(0.5),
FD2(1), # one
FD2(592.57), # randomly generated
typemax(FD2)], # near maximum range
WFD4 => [typemin(WFD4),
reinterpret(WFD4, -157030247204331916472131926508185768261),
reinterpret(WFD4, -64628160301714851880492570261792833470),
reinterpret(WFD4, -11679287782747983139362515984380939763),
WFD4(-1),
WFD4(-0.0001),
WFD4(0),
WFD4(0.0001),
WFD4(0.01),
WFD4(1),
reinterpret(WFD4, 164435910993133062409572187012743929911),
typemax(WFD4)])
# Floating point values written as integer strings. Useful for testing behaviours of
# trunc, floor, and ceil.
const INTS = Dict(
v => replace(@sprintf("%.200f", v), "." => "")
for v in [
1.22,
1.23,
1.51,
2.2,
2.3,
]
)
const smaller_than_decimal = [1.22, 1.23, 2.3]
const bigger_than_decimal = [1.51, 2.2]
# numbers that may cause overflow
islarge(x) = x == typemin(x) || abs(x) > 1000
# numbers that can never cause overflow
issmall(x) = -1 < x ≤ 1
function parse_int(::Type{FD{T, f}}, val::AbstractString; ceil::Bool=false) where {T, f}
reinterpret(FD{T, f}, parse(T, val[1:(f + 1)]) + T(ceil))
end
@testset "FixedPointDecimals" begin
# Basic tests for the methods created above
@testset "alt" begin
@test trunc_alt(FD2, 0.0) == FD2(0)
@test floor_alt(FD2, 0.0) == FD2(0)
@test ceil_alt(FD2, 0.0) == FD2(0)
@test trunc_alt(FD2, 2.149) == FD2(2.14)
@test floor_alt(FD2, 2.149) == FD2(2.14)
@test ceil_alt(FD2, 2.149) == FD2(2.15)
@test trunc_alt(FD2, -2.149) == FD2(-2.14)
@test floor_alt(FD2, -2.149) == FD2(-2.15)
@test ceil_alt(FD2, -2.149) == FD2(-2.14)
@test trunc_alt(FD2, nextfloat(0.0)) == FD2(0)
@test floor_alt(FD2, nextfloat(0.0)) == FD2(0)
@test ceil_alt(FD2, nextfloat(0.0)) == FD2(0.01)
@test trunc_alt(FD2, prevfloat(0.0)) == FD2(0)
@test floor_alt(FD2, prevfloat(0.0)) == FD2(-0.01)
@test ceil_alt(FD2, prevfloat(0.0)) == FD2(0)
end
@testset "max_exp10" begin
@test FixedPointDecimals.max_exp10(Int8) == 2
@test FixedPointDecimals.max_exp10(Int64) == 18
@test FixedPointDecimals.max_exp10(Int128) == 38
@test FixedPointDecimals.max_exp10(UInt8) == 2
@test FixedPointDecimals.max_exp10(UInt64) == 19
@test FixedPointDecimals.max_exp10(UInt128) == 38
@test FixedPointDecimals.max_exp10(BigInt) == -1
for T in CONTAINER_TYPES
x = FixedPointDecimals.max_exp10(T)
@test T(10)^x == widen(T(10))^x
end
@testset "custom integer types" begin
@eval begin
primitive type Int24 <: Integer 24 end
Base.typemax(::Type{Int24}) = 2^24
Base.widen(::Type{Int24}) = Int32
end
@test FixedPointDecimals.max_exp10(Int24) == 7
# Note: we're just pretending that this is unbounded
@eval primitive type IntUnbounded <: Integer 256 end
@test_throws MethodError FixedPointDecimals.max_exp10(IntUnbounded)
end
end
# ensure that the coefficient multiplied by the highest and lowest representable values of
# the container type do not result in overflow.
@testset "coefficient" begin
@testset "overflow $T" for T in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T)
powt = FixedPointDecimals.coefficient(FD{T, f})
@test powt % 10 == 0
@test checked_mul(widen(powt), typemax(T)) == widemul(powt, typemax(T))
@test checked_mul(widen(powt), typemin(T)) == widemul(powt, typemin(T))
end
end
@testset "constructor" begin
@testset "invalid $T" for T in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T) + 1
@test_throws ArgumentError reinterpret(FD{T,f}, 0)
@test_throws ArgumentError reinterpret(FD{T,-1}, 0)
end
end
@testset "conversion" begin
@testset for x in keyvalues[FD2]
@testset for T in [Rational{Int128}, WFD2, WFD4]
@test convert(FD2, convert(T, x)) == x
@test T(x) == convert(T, x)
end
if 0 ≤ abs(x) < 2
@testset for T in [SFD2, SFD4, FD4]
@test convert(FD2, convert(T, x)) == x
end
end
end
@testset "to float" begin
# Convert the rational 5//7 into a FixedDecimal with as much precision as we can
# without using BigInt.
T = Int128
f = FixedPointDecimals.max_exp10(T)
powt = FixedPointDecimals.coefficient(FD{T,f})
val = T(trunc(BigInt, widemul(5//7, powt)))
fd = reinterpret(FD{T,f}, val)
@test convert(Float64, fd) != convert(BigFloat, fd)
@test convert(Float64, fd) == T(val) / T(powt)
@test convert(BigFloat, fd) == BigInt(val) / BigInt(powt)
end
@testset "to rational" begin
fd = reinterpret(FD2, 25)
@test convert(Rational, fd) == 1//4
end
@testset "invalid" begin
@test_throws InexactError convert(FD2, FD4(0.0001))
@test_throws InexactError convert(FD4, typemax(FD2))
@test_throws InexactError convert(SFD2, typemax(FD2))
@test_throws InexactError convert(FD2, 1//3)
@test_throws InexactError convert(FD{Int8,1}, 1//4)
end
@testset "limits of $T" for T in CONTAINER_TYPES
max_exp = FixedPointDecimals.max_exp10(T)
f = max_exp
powt = widen(FixedPointDecimals.coefficient(FD{T,f}))
# Smallest positive integer which is out-of-bounds for the FD
x = max_exp - f + 1
oob = T(10)^(x > 0 ? x : 0)
# ideally we would just use `typemax(T)` but due to precision issues with
# floating-point its possible the closest float will exceed `typemax(T)`.
# Note: we should be doing `trunc(T, ...)` but truncating a BigFloat can be
# problematic (https://github.com/JuliaLang/julia/issues/21914)
max_int = trunc(BigInt, prevfloat(typemax(T) / powt) * powt)
min_int = trunc(BigInt, nextfloat(typemin(T) / powt) * powt)
@test max_int <= typemax(T)
@test value(convert(FD{T,f}, max_int / powt)) == max_int
@test min_int >= typemin(T)
@test value(convert(FD{T,f}, min_int / powt)) == min_int
@test convert(FD{T,f}, typemax(T) // powt) == reinterpret(FD{T,f}, typemax(T))
@test convert(FD{T,f}, typemin(T) // powt) == reinterpret(FD{T,f}, typemin(T))
@test_throws InexactError convert(FD{T,f}, oob)
# Converting to a floating-point
fd = reinterpret(FD{T,f}, typemax(T))
@test convert(Float32, fd) == Float32(typemax(T) / powt)
@test convert(Float64, fd) == Float64(typemax(T) / powt)
@test convert(BigFloat, fd) == BigInt(typemax(T)) / powt
fd = reinterpret(FD{T,f}, typemin(T))
@test convert(Float32, fd) == Float32(typemin(T) / powt)
@test convert(Float64, fd) == Float64(typemin(T) / powt)
@test convert(BigFloat, fd) == BigInt(typemin(T)) / powt
# Converting to a rational
fd = reinterpret(FD{T,f}, typemax(T))
@test convert(Rational, fd) == typemax(T) // powt
fd = reinterpret(FD{T,f}, typemin(T))
@test convert(Rational, fd) == typemin(T) // powt
# The following tests require that the number of decimal places allow for
# `-10 < x < 10` where x is a FD{T,f}. Needed to test `convert(::FD, ::Integer)`.
max_int = typemax(T) ÷ powt * powt
min_int = typemin(T) ÷ powt * powt
@test convert(FD{T,f}, max_int ÷ powt) == reinterpret(FD{T,f}, max_int)
@test convert(FD{T,f}, min_int ÷ powt) == reinterpret(FD{T,f}, min_int)
@test_throws InexactError convert(FD{T,f}, max_int ÷ powt + oob)
@test_throws InexactError convert(FD{T,f}, min_int ÷ powt - oob) # Overflows with Unsigned
end
@testset "limits from $U to $T" for T in CONTAINER_TYPES, U in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T)
g = FixedPointDecimals.max_exp10(U)
powt = div(
FixedPointDecimals.coefficient(FD{T, f}),
FixedPointDecimals.coefficient(FD{U, g}),
)
val = typemax(U)
expected = widemul(typemax(U), powt)
# Mixed usage of signed and unsigned types makes testing with typemin hard.
if f >= g && expected <= typemax(T)
@test convert(FD{T,f}, reinterpret(FD{U,g}, val)) == reinterpret(FD{T,f}, expected)
else
@test_throws InexactError convert(FD{T,f}, reinterpret(FD{U,g}, val))
end
end
end
@testset "promotion" begin
@test 1//10 + FD2(0.1) === 1//5
@test 0.1 + FD2(0.1) === 0.2
@test 1 + FD2(0.1) === FD2(1.1)
@test FD2(0.1) + FD4(0.0001) === FD4(0.1001)
@test WFD2(0.1) + FD4(0.0001) === WFD4(0.1001)
end
@testset "float" begin
@test float(-one(SFD2)) === -1.0f0
@test float(zero(SFD2)) === 0.0f0
@test float(one(SFD2)) === 1.0f0
@test float(-one(FD2)) === -1.0
@test float(zero(FD2)) === 0.0
@test float(one(FD2)) === 1.0
end
@testset "comparison" begin
@testset for T in [FD2, WFD4]
@testset for (i, x) in enumerate(keyvalues[T])
@test x == x
@testset for y in keyvalues[T][i+1:end]
@test x ≠ y
@test x < y
@test x ≤ y
@test y ≠ x
@test y > x
@test y ≥ x
end
end
end
end
@testset "traits" begin
@testset "zero, one" begin
@test FD2(0) == zero(FD2)
@test FD2(42.42) + FD2(0) == FD2(42.42)
@test FD2(1) == one(FD2)
@test FD2(42.42) * FD2(1) == FD2(42.42)
end
@testset "eps, floatmin, floatmax" begin
@test floatmin(FD2) == eps(FD2) == FD2(0.01)
@test eps(FD2(1.11)) == FD2(0.01)
for x in keyvalues[FD2]
if x ≠ typemax(FD2)
@test x + eps(x) > x
end
if x ≠ typemin(FD2)
@test x - eps(x) < x
if x ≠ 0
@test floatmin(FD2) ≤ abs(x) ≤ floatmax(FD2)
end
end
end
end
end
@testset "addition" begin
@test FD2(0) + FD2(0) == FD2(0)
@test FD2(1.11) + FD2(2.22) == FD2(3.33)
@test FD2(0.01) + FD2(0.01) == FD2(0.02)
@test FD2(0.01) + FD2(-0.01) == FD2(0)
# overflow
@test typemax(FD2) + eps(FD2) == typemin(FD2)
end
@testset "subtraction" begin
for x in keyvalues[FD2]
@test x - x == 0
for y in keyvalues[FD2]
@test x + y - y == x
@test y + x - y == x
end
end
end
@testset "multiply" begin
@testset "with integer, $T" for T in [FD2, WFD4]
for x in keyvalues[T]
@test 1 * x == x * 1 == x
@test one(x) * x == x * one(x) == x
@test (-1) * x == x * (-1) == -x
@test 2 * x == x + x == (one(x) + one(x)) * x
end
end
@testset "binary" begin
@test FD2(0.33) * FD2(1.00) == FD2(0.33)
@test FD2(0.33) * FD2(3.00) == FD2(0.99)
@test FD2(0.33) * FD2(0.50) == FD2(0.16)
@test FD2(0.33) * FD2(0.33) == FD2(0.11)
@test FD2(0.67) * FD2(0.67) == FD2(0.45)
end
@testset "key values $T" for T in [FD2, WFD4]
totest = [(x, y) for x in keyvalues[T] for y in keyvalues[T] if
issmall(x) || issmall(y) || (!islarge(x) && !islarge(y))]
@testset for (x, y) in totest
# test the multiplication result is correctly rounded
@test x * y == round(typeof(x), Base.widemul(x, y))
end
@test prod(keyvalues[T]) == 0
end
@testset "without promotion" begin
@test_throws InexactError FD{Int8,1}(20)
@test 20 * FD{Int8,1}(0.1) == FD{Int8,1}(2.0)
@test FD{Int8,1}(0.1) * 20 == FD{Int8,1}(2.0)
end
@testset "limits of $T" for T in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T)
scalar = convert(FD{T,f}, 1 // 10) # 0.1
# Since multiply will round the result we'll make sure our value does not
# always rounds down.
max_int = typemax(T) - (typemax(T) % 10)
min_int = typemin(T) - (typemin(T) % 10)
@test reinterpret(FD{T,f}, max_int) * scalar ==
reinterpret(FD{T,f}, div(max_int, 10))
@test reinterpret(FD{T,f}, min_int) * scalar ==
reinterpret(FD{T,f}, div(min_int, 10))
end
end
@testset "division" begin
@testset "division by 1" begin
@testset for x in keyvalues[FD2]
@test x / one(x) == x
# signed integers using two's complement have one additional negative value
if x < 0 && x == typemin(x)
@test_throws InexactError x / -one(x)
else
@test x / -one(x) == -x
end
end
end
@testset "division by 2" begin
# even targets
for x in FD2[-0.02, 0, 0.02, 1.00]
for y in [2x-eps(x), 2x, 2x+eps(x)]
@test y / 2 == y / 2one(y) == x == y * FD2(0.5)
end
end
# odd targets
for x in FD2[-0.01, 0.01, 1.01]
y = 2x
@test y / 2 == y / 2one(x) == x == y * FD2(0.5)
end
# big numbers
for T in [SFD2, SFD4, FD2, FD4, WFD2, WFD4]
@test typemin(T) / 2 * 2 == typemin(T)
@test (typemax(T) / 2 - eps(T)) * 2 == typemax(T) - eps(T)
end
end
@testset "division by 3" begin
@test FD2(10) / 3 == FD2(3.33)
@test FD2(20) / 3 == FD2(6.67)
@test FD2(-1.50) / 3 == FD2(-0.50)
@test FD2(-20) / 3 == FD2(-6.67)
# should work with big numbers
@test typemin(FD2) / 3 < 0
@test typemax(FD2) / 3 > 0
end
@testset "reciprocal $x" for x in filter(!iszero, keyvalues[FD2])
# convert each keyvalue to rational to take an exact reciprocal
# and check that it rounds to the in-type reciprocal.
r = 1/Rational{BigInt}(x)
@test round(FD2, r) == 1/x
end
@testset "divide $x by 0" for x in keyvalues[FD2]
@test_throws DivideError x/FD2(0)
end
@testset "rounding" begin
# RoundNearest: 1.27 / 2 == 0.635 rounds up to 0.64
@test FD2(1.27) / FD2(2) == FD2(0.64)
@test FD2(-1.27) / FD2(2) == FD2(-0.64)
@test FD2(1.27) / 2 == FD2(0.64)
@test FD2(-1.27) / 2 == FD2(-0.64)
@test 127 / FD2(200) == FD2(0.64)
@test -127 / FD2(200) == FD2(-0.64)
# RoundNearest: 1.29 / 2 == 0.645 rounds down to 0.64
@test FD2(1.29) / FD2(2) == FD2(0.64)
@test FD2(-1.29) / FD2(2) == FD2(-0.64)
@test FD2(1.29) / 2 == FD2(0.64)
@test FD2(-1.29) / 2 == FD2(-0.64)
@test 129 / FD2(200) == FD2(0.64)
@test -129 / FD2(200) == FD2(-0.64)
# Use of Float or BigFloat internally should not change the calculated result
@test round(Int, 109 / 200 * 100) == 55
@test round(Int, BigInt(109) / 200 * 100) == 54 # Correct
x = FD2(1.09)
y = FD2(200)
for T in [FD2, Int8, Int128, BigInt]
@test x / T(2) == FD2(0.54)
@test T(109) / y == FD2(0.54)
end
end
@testset "without promotion" begin
@test_throws InexactError FD{Int8,1}(20)
@test Int8(20) / FD{Int8,1}(2) == FD{Int8,1}(10.0)
@test FD{Int8,1}(2) / Int8(20) == FD{Int8,1}(0.1)
end
@testset "limits" begin
@test_throws InexactError Int8(1) / FD{Int8,2}(0.4)
@test_throws InexactError FD{Int8,2}(1) / FD{Int8,2}(0.4)
end
@testset "limits of $T" for T in CONTAINER_TYPES
max_exp = FixedPointDecimals.max_exp10(T)
f = max_exp
scalar = convert(FD{T,f}, 1 // 10) # 0.1
# Should be outside of the bounds of a FD{T,f}
x = T(10)
@test_throws InexactError FD{T,f}(x)
# Since multiply will round the result we'll make sure our value always
# rounds down.
max_int = typemax(T) - (typemax(T) % 10)
min_int = typemin(T) - (typemin(T) % 10)
max_fd = reinterpret(FD{T,f}, max_int)
min_fd = reinterpret(FD{T,f}, min_int)
@test (max_fd * scalar) / scalar == max_fd
@test (min_fd * scalar) / scalar == min_fd
@test max_fd / x == reinterpret(FD{T,f}, div(max_int, x))
@test min_fd / x == reinterpret(FD{T,f}, div(min_int, x))
end
end
@testset "truncating div" begin
@testset "div by 1" begin
@testset for x in keyvalues[FD2]
@test x ÷ one(x) === trunc(x)
# signed integers using two's complement have one additional negative value
if x < 0 && trunc(x) === typemin(x)
@test_throws InexactError x ÷ -one(x)
else
@test x ÷ -one(x) === -trunc(x)
end
end
end
@testset "div by 2" begin
@testset for x in keyvalues[FD2]
@test x ÷ 2one(x) === x ÷ 2 === FD2(x.i ÷ FD2(2).i)
end
end
@testset "return types" begin
@test div(2one(FD2), 3) isa FD2
@test one(FD2) ÷ one(FD2) isa FD2
# Promotion to bigger type
@test one(FD4) ÷ one(FD2) isa FD4
@test one(FD2) ÷ one(FD4) isa FD4
@test one(FD{Int32, 2}) ÷ one(FD{Int64, 6}) isa FD{Int64, 6}
end
@testset "rem with rounding modes" begin
if VERSION >= v"1.4.0-"
# TODO: Test RoundFromZero, RoundNearest, RoundNearestTiesAway
# See: https://github.com/JuliaLang/julia/issues/34519
@testset for x in keyvalues[FD2],
R in (RoundToZero, RoundUp, RoundDown)
@test rem(x, 2one(x), R) === rem(x, 2, R) === reinterpret(FD2, rem(x.i, FD2(2).i, R))
end
end
@testset for x in keyvalues[FD2], f in (fld, cld, fld1, div)
@test f(x, 2one(x)) === f(x, 2) === FD2(f(x.i, FD2(2).i))
end
end
@testset "div with rounding modes" begin
if VERSION >= v"1.4.0-"
# TODO: Test RoundFromZero -- https://github.com/JuliaLang/julia/issues/34519
@testset for x in keyvalues[FD2],
R in (RoundToZero, RoundUp, RoundDown, RoundNearest, RoundNearestTiesAway)
@test div(x, 2one(x), R) === div(x, 2, R) === FD2(div(x.i, FD2(2).i, R))
end
end
@testset for x in keyvalues[FD2], f in (fld, cld, fld1, div)
@test f(x, 2one(x)) === f(x, 2) === FD2(f(x.i, FD2(2).i))
end
end
end
@testset "abs, sign" begin
@testset for T in [FD2, WFD4]
for x in keyvalues[T]
@test sign(x)^2 ∈ [0, 1]
@test abs(abs(x)) == abs(x)
@test abs(x) * sign(x) == x
@test abs(x) == abs(-x)
if x ≠ typemin(x)
@test abs(x) ≥ 0
@test sign(x) == -sign(-x)
end
@test (abs(x) == 0) === (x == 0)
end
end
end
@testset "isinteger" begin
# Note: Test cannot be used unless we can construct `FD{Int8,6}`
# @testset "overflow" begin
# # Note: After overflow `Int8(10)^6 == 64`
# @test !isinteger(reinterpret(FD{Int8,6}, 64)) # 0.000064
# end
@testset "limits of $T" for T in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T)
max_fd = typemax(FD{T,f})
min_fd = typemin(FD{T,f})
@test !isinteger(max_fd)
@test isinteger(trunc(max_fd))
@test isinteger(min_fd) == (min_fd == zero(min_fd))
@test isinteger(trunc(min_fd))
end
end
@testset "round" begin
@testset "to Int" begin
@test round(Int, FD2(-0.51)) === -1
@test round(Int, FD2(-0.50)) === 0
@test round(Int, FD2(-0.49)) === 0
@test round(Int, FD2(0.50)) === 0
@test round(Int, FD2(0.51)) === 1
@test round(Int, FD2(1.50)) === 2
end
@testset "rounding invariant $x" for x in filter(!islarge, keyvalues[FD2])
@test isinteger(round(x))
@test x - FD2(1//2) ≤ round(x) ≤ x + FD2(1//2)
if x - FD2(1//2) == round(x) || x + FD2(1//2) == round(x)
@test iseven(convert(Int, 100round(x)))
end
@testset "to Int" for T in [Int64, Int32]
@test round(T, x) == round(x)
end
# to FD1
@test x - FD2(1//20) ≤ round(FD1, x) ≤ x + FD2(1//20)
# to FD2
@test x == round(FD2, x)
end
@testset "limits of $T" for T in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T)
powt = FixedPointDecimals.coefficient(FD{T,f})
# Ideally we would just use `typemax(T)` but due to precision issues with
# floating-point its possible the closest float will exceed `typemax(T)`.
# Additionally, when the division results in a `BigFloat` we need to first truncate
# to a `BigInt` before we can truncate the type we want.
max_int = T(trunc(BigInt, prevfloat(typemax(T) / powt) * powt))
min_int = T(trunc(BigInt, nextfloat(typemin(T) / powt) * powt))
@test round(FD{T,f}, max_int / powt) == reinterpret(FD{T,f}, max_int)
@test round(FD{T,f}, min_int / powt) == reinterpret(FD{T,f}, min_int)
@test round(FD{T,f}, typemax(T) // powt) == reinterpret(FD{T,f}, typemax(T))
@test round(FD{T,f}, typemin(T) // powt) == reinterpret(FD{T,f}, typemin(T))
# Note: rounding away from zero will result in an exception.
max_int = typemax(T)
min_int = typemin(T)
max_dec = max_int / powt
min_dec = min_int / powt
if round(T, max_dec) == trunc(T, max_dec)
@test round(reinterpret(FD{T,f}, max_int)) == FD{T,f}(round(T, max_dec))
else
@test_throws InexactError round(reinterpret(FD{T,f}, max_int))
end
if round(T, min_dec) == trunc(T, min_dec)
@test round(reinterpret(FD{T,f}, min_int)) == FD{T,f}(round(T, min_dec))
else
@test_throws InexactError round(reinterpret(FD{T,f}, min_int))
end
end
end
@testset "trunc" begin
@test trunc(Int, FD2(0.99)) === 0
@test trunc(Int, FD2(-0.99)) === 0
@test trunc(Int, FD2(1)) === 1
@test trunc(Int, FD2(-1)) === -1
@test trunc(typemax(FD2)) ≤ typemax(FD2)
@test trunc(Int, typemax(FD2)) ≤ typemax(FD2)
@test trunc(typemin(FD2)) ≥ typemin(FD2)
@test trunc(Int, typemin(FD2)) ≥ typemin(FD2)
@test trunc(eps(FD2)) == 0
@test trunc(-eps(FD2)) == 0
@testset "truncate invariant" for x in keyvalues[FD2]
@test isinteger(trunc(x))
if x ≠ typemin(FD2)
@test abs(x) - 1 < abs(trunc(x)) ≤ abs(x)
else
@test abs(trunc(x)) > 0
end
# to FD1
@test isinteger(Base.widemul(10, FD2(trunc(FD1, x))))
@test abs(FD2(trunc(FD1, x))) ≥ 0
end
@testset "truncate precision" begin
for x in smaller_than_decimal
@test trunc(FD2, x) ≠ trunc(FD3, x)
@test trunc(FD2, x) == FD2(x - 0.01)
@test trunc(FD3, x) == FD3(x - 0.001)
for f in 0:18
@test trunc(FD{Int64, f}, x) == parse_int(FD{Int64, f}, INTS[x])
end
for f in 0:200
@test trunc(FD{BigInt, f}, x) == parse_int(FD{BigInt, f}, INTS[x])
end
end
for x in bigger_than_decimal
exactval = FD3(x)
for f in 3:14
@test trunc(FD{Int64, f}, x) == exactval
end
for f in 0:18
@test trunc(FD{Int64, f}, x) == parse_int(FD{Int64, f}, INTS[x])
end
end
end
@testset "limits of $T" for T in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T)
powt = FixedPointDecimals.coefficient(FD{T,f})
# When converting from typemax to a floating-point it is possible that due to
# precision issues that the closest possible float will exceed the typemax.
max_float = prevfloat(convert(AbstractFloat, typemax(FD{T,f})))
min_float = nextfloat(convert(AbstractFloat, typemin(FD{T,f})))
@test trunc(FD{T,f}, max_float) == trunc_alt(FD{T,f}, max_float)
@test trunc(FD{T,f}, min_float) == trunc_alt(FD{T,f}, min_float)
@test trunc(reinterpret(FD{T,f}, typemax(T))) == FD{T,f}(div(typemax(T), powt))
@test trunc(reinterpret(FD{T,f}, typemin(T))) == FD{T,f}(div(typemin(T), powt))
end
end
# eps that works for integers too
epsi(::Type{T}) where T <: Integer = one(T)::T
epsi(::Type{T}) where T = eps(T)
@testset "floor, ceil" begin
@testset for x in filter(!islarge, keyvalues[FD2])
@test floor(x) ≤ x < floor(x) + 1
@test ceil(x) - 1 < x ≤ ceil(x)
@test isinteger(floor(x))
@test isinteger(ceil(x))
@testset for T in [Int32, Int64, FD1, FD2, FD4, WFD2, WFD4]
@test floor(T, x) ≤ x < floor(T, x) + epsi(T)
@test ceil(T, x) - epsi(T) < x ≤ ceil(T, x)
end
end
@testset "floor, ceil precision" begin
for x in smaller_than_decimal
@test floor(FD2, x) != floor(FD3, x)
@test floor(FD2, x) == FD2(x - 0.01)
@test floor(FD3, x) == FD3(x - 0.001)
for f in 0:18
@test floor(FD{Int64, f}, x) == parse_int(FD{Int64, f}, INTS[x])
end
@test ceil(FD3, x) == ceil(FD4, x) == FD4(x)
end
for x in bigger_than_decimal
@test ceil(FD2, x) ≠ ceil(FD3, x)
@test ceil(FD2, x) == FD2(x + 0.01)
@test ceil(FD3, x) == FD3(x + 0.001)
for f in 0:18
@test ceil(FD{Int64, f}, x) == parse_int(FD{Int64, f}, INTS[x], ceil=true)
end
@test floor(FD3, x) == floor(FD4, x) == FD4(x)
end
end
@testset "limits of $T" for T in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T)
powt = FixedPointDecimals.coefficient(FD{T,f})
# When converting from typemax to a floating-point it is possible that due to
# precision issues that the closest possible float will exceed the typemax.
max_float = prevfloat(convert(AbstractFloat, typemax(FD{T,f})))
min_float = nextfloat(convert(AbstractFloat, typemin(FD{T,f})))
@test floor(FD{T,f}, max_float) == floor_alt(FD{T,f}, max_float)
@test floor(FD{T,f}, min_float) == floor_alt(FD{T,f}, min_float)
@test ceil(FD{T,f}, max_float) == ceil_alt(FD{T,f}, max_float)
@test ceil(FD{T,f}, min_float) == ceil_alt(FD{T,f}, min_float)
# Note: rounding away from zero will result in an exception.
max_int = typemax(T)
min_int = typemin(T)
max_dec = max_int / powt
min_dec = min_int / powt
@test floor(reinterpret(FD{T,f}, max_int)) == FD{T,f}(floor(T, max_dec))
if floor(T, min_dec) == trunc(T, min_dec)
@test floor(reinterpret(FD{T,f}, min_int)) == FD{T,f}(floor(T, min_dec))
else
@test_throws InexactError floor(reinterpret(FD{T,f}, min_int))
end
if ceil(T, max_dec) == trunc(T, max_dec)
@test ceil(reinterpret(FD{T,f}, max_int)) == FD{T,f}(ceil(T, max_dec))
else
@test_throws InexactError ceil(reinterpret(FD{T,f}, max_int))
end
@test ceil(reinterpret(FD{T,f}, min_int)) == FD{T,f}(ceil(T, min_dec))
end
end
@testset "type stability" begin
# Test that basic operations are type stable for all the basic integer types.
fs = [0, 1, 2, 7, 16, 38] # To save time, don't test all possible combinations.
@testset for T in (CONTAINER_TYPES..., BigInt,)
maxF = FixedPointDecimals.max_exp10(T)
frange = filter(f->f<=maxF, fs)
# Unary operations
@testset for f in frange
@test @inferred(zero(FD{T,f}(1))) === FD{T,f}(0)
@test @inferred(one(FD{T,f}(1))) === FD{T,f}(1)
@test @inferred(ceil(FD{T,f}(1))) === FD{T,f}(1)
@test @inferred(round(FD{T,f}(1))) === FD{T,f}(1)
@test @inferred(abs(FD{T,f}(1))) === FD{T,f}(1)
@test @inferred(FD{T,f}(1)^2) === FD{T,f}(1)
@test @inferred(typemax(FD{T,f})) isa FD{T,f}
end
# Binary operations
@testset for (f1,f2) in Iterators.product(frange, frange)
fmax = max(f1,f2)
@test @inferred(FD{T,f1}(1) + FD{T,f2}(0)) === FD{T,fmax}(1)
@test @inferred(FD{T,f1}(1) - FD{T,f2}(0)) === FD{T,fmax}(1)
@test @inferred(FD{T,f1}(1) * FD{T,f2}(1)) === FD{T,fmax}(1)
@test @inferred(FD{T,f1}(1) / FD{T,f2}(1)) === FD{T,fmax}(1)
@test @inferred(FD{T,f1}(1) ÷ FD{T,f2}(1)) === FD{T,fmax}(1)
@test @inferred(max(FD{T,f1}(1), FD{T,f2}(0))) === FD{T,fmax}(1)
@test @inferred(min(FD{T,f1}(1), FD{T,f2}(0))) === FD{T,fmax}(0)
end
end
end
@testset "print" begin
@test string(FD2(1.00)) == "1.00"
@test string(FD2(1.23)) == "1.23"
@test string(FD2(42.40)) == "42.40"
@test string(FD2(-42.40)) == "-42.40"
@test string(FD2(-0.01)) == "-0.01"
@test string(FD2(0)) == "0.00"
@test string(FixedDecimal{Int,0}(123.4)) == "123"
# Displaying a decimal could be incorrect when using a decimal place precision which is
# close to or at the limit for our storage type.
@testset "limits of $T" for T in CONTAINER_TYPES
f = FixedPointDecimals.max_exp10(T)
function fmt(val, f)
str = string(val)
neg = ""
if str[1] == '-'
neg = "-"
str = str[2:end]
end
return string(neg, str[1], ".", rpad(str[2:end], f, '0'))
end
@test string(reinterpret(FD{T,f}, typemax(T))) == fmt(typemax(T), f)
@test string(reinterpret(FD{T,f}, typemin(T))) == fmt(typemin(T), f)
end
end
@testset "show" begin
@testset "compact" begin
@test sprint(show, FD2(1.00), context=:compact=>true) == "1.0"
@test sprint(show, FD2(1.23), context=:compact=>true) == "1.23"
@test sprint(show, FD2(42.40), context=:compact=>true) == "42.4"
@test sprint(show, FD2(-42.40), context=:compact=>true) == "-42.4"
@test sprint(show, FD2(-0.01), context=:compact=>true) == "-0.01"
@test sprint(show, FD2(0), context=:compact=>true) == "0.0"
@test repr(typemin(FixedDecimal{Int64, 2})) ==
"FixedDecimal{Int64,2}(-92233720368547758.08)"
@test repr(typemax(FixedDecimal{Int64, 2})) ==
"FixedDecimal{Int64,2}(92233720368547758.07)"
@test repr(typemin(FixedDecimal{Int32, 2})) ==
"FixedDecimal{Int32,2}(-21474836.48)"
@test repr(typemax(FixedDecimal{Int32, 2})) ==
"FixedDecimal{Int32,2}(21474836.47)"
end
end
@testset "string" begin
for x in keyvalues[FD2]
if 0 ≤ abs(x) < 1000
@test Core.eval(@__MODULE__, Meta.parse(string(x))) == x
end
end
end
@testset "parse_round" begin
@test FixedPointDecimals.parse_round(Int, "44", RoundNearest) == 0
@test FixedPointDecimals.parse_round(Int, "45", RoundNearest) == 0
@test FixedPointDecimals.parse_round(Int, "46", RoundNearest) == 1
@test FixedPointDecimals.parse_round(Int, "54", RoundNearest) == 0
@test FixedPointDecimals.parse_round(Int, "55", RoundNearest) == 1
@test FixedPointDecimals.parse_round(Int, "56", RoundNearest) == 1
# Handle a number of digits that exceeds the storage capacity of Int128
@test FixedPointDecimals.parse_round(Int8, "9"^40, RoundNearest) == 1
end
@testset "parse" begin
# Note: the underscore used in the reinterpreted integer is used to indicate the decimal
# place.
@testset "decimal position" begin
@test parse(FD2, "123") == reinterpret(FD2, 123_00)
@test parse(FD2, "0.123") == reinterpret(FD2, 0_12)
@test parse(FD2, ".123") == reinterpret(FD2, 0_12)
@test parse(FD2, "1.23") == reinterpret(FD2, 1_23)
@test parse(FD2, "12.3") == reinterpret(FD2, 12_30)
@test parse(FD2, "123.") == reinterpret(FD2, 123_00)
@test parse(FD2, "123.0") == reinterpret(FD2, 123_00)
@test parse(FD2, "-123") == reinterpret(FD2, -123_00)
@test parse(FD2, "-0.123") == reinterpret(FD2, -0_12)
@test parse(FD2, "-.123") == reinterpret(FD2, -0_12)
@test parse(FD2, "-1.23") == reinterpret(FD2, -1_23)
@test parse(FD2, "-12.3") == reinterpret(FD2, -12_30)
@test parse(FD2, "-123.") == reinterpret(FD2, -123_00)
@test parse(FD2, "-123.0") == reinterpret(FD2, -123_00)
end
@testset "scientific notation" begin
@test parse(FD4, "12e0") == reinterpret(FD4, 00012_0000)
@test parse(FD4, "12e3") == reinterpret(FD4, 12000_0000)
@test parse(FD4, "12e-3") == reinterpret(FD4, 00000_0120)
@test parse(FD4, "1.2e0") == reinterpret(FD4, 00001_2000)
@test parse(FD4, "1.2e3") == reinterpret(FD4, 01200_0000)
@test parse(FD4, "1.2e-3") == reinterpret(FD4, 00000_0012)
@test parse(FD4, "1.2e-4") == reinterpret(FD4, 00000_0001)
@test parse(FD4, "-12e0") == reinterpret(FD4, -00012_0000)
@test parse(FD4, "-12e3") == reinterpret(FD4, -12000_0000)
@test parse(FD4, "-12e-3") == reinterpret(FD4, -00000_0120)
@test parse(FD4, "-1.2e0") == reinterpret(FD4, -00001_2000)
@test parse(FD4, "-1.2e3") == reinterpret(FD4, -01200_0000)
@test parse(FD4, "-1.2e-3") == reinterpret(FD4, -00000_0012)
@test parse(FD2, "999e-1") == reinterpret(FD2, 99_90)
@test parse(FD2, "999e-2") == reinterpret(FD2, 09_99)
@test parse(FD2, "999e-3") == reinterpret(FD2, 01_00)
@test parse(FD2, "999e-4") == reinterpret(FD2, 00_10)
@test parse(FD2, "999e-5") == reinterpret(FD2, 00_01)
@test parse(FD2, "999e-6") == reinterpret(FD2, 00_00)
@test parse(FD2, "-999e-1") == reinterpret(FD2, -99_90)
@test parse(FD2, "-999e-2") == reinterpret(FD2, -09_99)
@test parse(FD2, "-999e-3") == reinterpret(FD2, -01_00)
@test parse(FD2, "-999e-4") == reinterpret(FD2, -00_10)
@test parse(FD2, "-999e-5") == reinterpret(FD2, -00_01)
@test parse(FD2, "-999e-6") == reinterpret(FD2, -00_00)
@test parse(FD4, "9"^96 * "e-100") == reinterpret(FD4, 0_001)
end
@testset "round to nearest" begin
@test parse(FD2, "0.444") == reinterpret(FD2, 0_44)
@test parse(FD2, "0.445") == reinterpret(FD2, 0_44)
@test parse(FD2, "0.446") == reinterpret(FD2, 0_45)
@test parse(FD2, "0.454") == reinterpret(FD2, 0_45)
@test parse(FD2, "0.455") == reinterpret(FD2, 0_46)
@test parse(FD2, "0.456") == reinterpret(FD2, 0_46)
@test parse(FD2, "-0.444") == reinterpret(FD2, -0_44)
@test parse(FD2, "-0.445") == reinterpret(FD2, -0_44)
@test parse(FD2, "-0.446") == reinterpret(FD2, -0_45)
@test parse(FD2, "-0.454") == reinterpret(FD2, -0_45)
@test parse(FD2, "-0.455") == reinterpret(FD2, -0_46)
@test parse(FD2, "-0.456") == reinterpret(FD2, -0_46)
@test parse(FD2, "0.009") == reinterpret(FD2, 0_01)
@test parse(FD2, "-0.009") == reinterpret(FD2, -0_01)
@test parse(FD4, "1.5e-4") == reinterpret(FD4, 0_0002)
end
@testset "round to zero" begin
@test parse(FD2, "0.444", RoundToZero) == reinterpret(FD2, 0_44)
@test parse(FD2, "0.445", RoundToZero) == reinterpret(FD2, 0_44)
@test parse(FD2, "0.446", RoundToZero) == reinterpret(FD2, 0_44)
@test parse(FD2, "0.454", RoundToZero) == reinterpret(FD2, 0_45)
@test parse(FD2, "0.455", RoundToZero) == reinterpret(FD2, 0_45)
@test parse(FD2, "0.456", RoundToZero) == reinterpret(FD2, 0_45)
@test parse(FD2, "-0.444", RoundToZero) == reinterpret(FD2, -0_44)
@test parse(FD2, "-0.445", RoundToZero) == reinterpret(FD2, -0_44)
@test parse(FD2, "-0.446", RoundToZero) == reinterpret(FD2, -0_44)