-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathcubichermite.jl
103 lines (83 loc) · 2.47 KB
/
cubichermite.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#=
Assuming uniform knots with spacing 1, and taking the data and derivatives of
the function as given respectively by ({p_k}, {m_k}).
We can evaluate a point x \in (x_k, x_{k+1}) using the following formula
p(x) = h00(x-xk) p_k + h10(x-xk) m_k + h01(x-xk) p_{k+1} + h11(x-xk) m_{k+1}
For more information, see:
* https://en.wikipedia.org/wiki/Cubic_Hermite_spline
=#
"""
Build approximants to the tangent lines at the data points
"""
function approximate_derivatives(p)
# Compute the deltas
N = length(p)
Δ = diff(p)
# Initialize secants
m = Array(Float64, N)
m[1] = Δ[1]
m[end] = Δ[N-1]
for k in 2:N-1
Δk = Δ[k]
Δkm1 = Δ[k-1]
# Average of secants unless opposite signs in which case use 0
m[k] = Δk*Δkm1 > 0 ? (Δ[k-1] + Δ[k])/2 : 0.0
end
# Prevent overshoot and ensure monotonicity
for k in 1:N-1
# If the current point is the same as the next or previous point
# Set derivative to 0
if (abs(p[k+1] - p[k]) < 1e-14)
m[k] = 0.0
m[k+1] = 0.0
# Otherwise, make sure that we satisfy the conditions for monotonicity
# described in wiki page
else
# Compute α and β
Δk = Δ[k]
αk = m[k] / Δk
βk = m[k+1] / Δk
# Check whether sum of squares is less than 9
if (αk^2 + βk^2) > 9
# If it is, then fix it
τ = 3 / sqrt(αk^2 + βk^2)
m[k] = τ*αk*Δk
m[k+1] = τ*βk*Δk
end
# More ad-hoc way to achieve the above
# m[i] = αk < 3.0 ? αk : 3 * Δi
end
end
return m
end
function pre_solve(p::Vector, m::Vector)
N = length(p)
@assert N == length(m)
out = Array(Float64, 4, N-1)
@inbounds @simd for n in 1:N-1
pn = p[n]
pn1 = p[n+1]
mn = m[n]
mn1 = m[n+1]
out[1, n] = pn
out[2, n] = mn
out[3, n] = 3pn1 - 3pn - 2mn - mn1
out[4, n] = -2pn1 + 2pn + mn + mn1
end
return out
end
function pre_solve(p::Vector)
# Get number of points
N = length(p)
# Create approximate derivatives
m = approximate_derivatives(p)
c = pre_solve(p, m)
return c
end
@inline function evaluate(coef_mat::Matrix, x::Real)
k = floor(Int, x)
t = x-k
t2 = t*t
t3 = t2*t
return coef_mat[1, k] + coef_mat[2, k]*t + coef_mat[3, k]*t2 + coef_mat[4, k]*t3
end