@@ -431,9 +431,6 @@ function Base.convert(::Type{T}, p::AbstractPolynomial{T,X}) where {T <: Number,
431
431
end
432
432
433
433
# Methods to ensure that matrices of polynomials behave as desired
434
- Base. promote_rule (:: Type{<:AbstractPolynomial{T}} ,
435
- :: Type{<:AbstractPolynomial{S}} ,
436
- ) where {T,S} = Polynomial{promote_type (T, S)}
437
434
Base. promote_rule (:: Type{P} ,:: Type{Q} ) where {T,X, P<: AbstractPolynomial{T,X} ,
438
435
S, Q<: AbstractPolynomial{S,X} } =
439
436
Polynomial{promote_type (T, S),X}
@@ -479,13 +476,13 @@ Test whether all coefficients of an `AbstractPolynomial` satisfy predicate `pred
479
476
480
477
You can implement `isreal`, etc., to a `Polynomial` by using `all`.
481
478
"""
482
- Base. all (pred, p:: AbstractPolynomial ) = all (pred, values (p))
479
+ Base. all (pred, p:: AbstractPolynomial{T, X} ) where {T,X} = all (pred, values (p))
483
480
"""
484
481
any(pred, poly::AbstractPolynomial)
485
482
486
483
Test whether any coefficient of an `AbstractPolynomial` satisfies predicate `pred`.
487
484
"""
488
- Base. any (pred, p:: AbstractPolynomial ) = any (pred, values (p))
485
+ Base. any (pred, p:: AbstractPolynomial{T,X} ) where {T, X} = any (pred, values (p))
489
486
490
487
491
488
0 commit comments